Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
思路分析:基本就是实现BST的中序遍历,BST中序遍历得到有序的数组,可以容易知道第k小数,以下给出了递归实现,借助counter记录当前遍历过的node数目,当counter==k时就可以返回。当然也可以借助栈实现迭代的解法。
Follow up: 进一步优化,我们可以在节点中额外保留一些信息: 左子树的大小. 在插入删除时也同时维护左子树的大小.进行查找时可以比较左子树size和k的大小,就可以知道要找的node在左边还是右边,通过分治法的思路加速. 时间复杂度为O(h)。
以下的伪代码摘录自 http://bookshadow.com/weblog/2015/07/02/leetcode-kth-smallest-element-bst/
如果BST节点TreeNode的属性可以扩展,则再添加一个属性leftCnt,记录左子树的节点个数
记当前节点为node
当node不为空时循环:
若k == node.leftCnt + 1:则返回node
否则,若k > node.leftCnt:则令k -= node.leftCnt + 1,令node = node.right
否则,node = node.left
上述算法时间复杂度为O(BST的高度)
当node不为空时循环:
若k == node.leftCnt + 1:则返回node
否则,若k > node.leftCnt:则令k -= node.leftCnt + 1,令node = node.right
否则,node = node.left
上述算法时间复杂度为O(BST的高度)
AC Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int res = 0;
public int counter = 0;
public int kthSmallest(TreeNode root, int k) {
inOrderK(root, k);
return res;
}
public void inOrderK(TreeNode root, int k){
if(root.left!=null) inOrderK(root.left, k);
counter++;
if(counter == k) {
res = root.val;
return;
}
if(root.right!=null) inOrderK(root.right, k);
}
}