洛谷P1962 斐波那契数列

题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1: 
5
输出样例#1: 
5
输入样例#2: 
10
输出样例#2: 
55

说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

n 的规模太大,需用矩阵快速幂。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 5
#define MOD 1000000007
using namespace std;
struct node{
       long long a[MAXN][MAXN];
}ans,base,s;
inline long long read(){
       long long date=0,w=1;char c=0;
       while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
       while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
       return date*w;
}
node operator *(const node &x,const node &y){
     node ret;
     for(int i=1;i<=2;i++)
     for(int j=1;j<=2;j++){
             ret.a[i][j]=0;
             for(int k=1;k<=2;k++){
                     ret.a[i][j]+=x.a[i][k]%MOD*y.a[k][j]%MOD;
                     ret.a[i][j]%=MOD;
                     }
             }
     return ret;
}
void mexp(long long k){
     for(int i=1;i<=2;i++)s.a[i][i]=1;
     base.a[1][2]=base.a[2][1]=base.a[2][2]=1;
     while(k){
              if(k&1)s=s*base;
              base=base*base;
              k>>=1;
              }
}
int main(){
    long long k;
    k=read();
    if(k==1||k==2){
                   printf("1\n");
                   return 0;
                   }
    mexp(k-2);
    ans.a[1][1]=ans.a[1][2]=1;
    ans=ans*s;
    printf("%d\n",ans.a[1][2]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值