洛谷P1880 [NOI1995]石子合并

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入样例#1: 
4
4 5 9 4
输出样例#1: 
43
54





区间DP:

dp[l][r] 表示将l至r这个区间合并的最优解

然后枚举断点 状态转移方程为dp[l][r]=min/max(dp[i][k],dp[k+1][j])+sum[i][j]

然后sum 可以写前缀和来维护

答案在dp[1][1+n-1]到dp[n][n+n-1]中取最大/最小

注意:石子堆是环形的!

附代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 210
#define MAXM 1010
#define MAX 999999999
using namespace std;
int n,ans1=MAX,ans2=-MAX;
int a[MAXN],s[MAXN],maxn[MAXM][MAXM],minn[MAXM][MAXM];
inline int read(){
	int date=0,w=1;char c=0;
	while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
	while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
	return date*w;
}
int main(){
	n=read();
	s[0]=0;
	for(int i=1;i<=n;i++){
		a[i]=read();
		a[i+n]=a[i];
		s[i]=s[i-1]+a[i];
	}
	for(int i=n+1;i<=(n<<1);i++)s[i]=s[i-1]+a[i];
	for(int i=(n<<1)-1;i>=1;i--)
	for(int j=i+1;j<i+n;j++){
		minn[i][j]=MAX;
		maxn[i][j]=-MAX;
		for(int k=i;k<j;k++){
			minn[i][j]=min(minn[i][j],minn[i][k]+minn[k+1][j]+s[j]-s[i-1]);
			maxn[i][j]=max(maxn[i][j],maxn[i][k]+maxn[k+1][j]+s[j]-s[i-1]);
		}
	}
	for(int i=1;i<=n;i++){
		ans1=min(ans1,minn[i][i+n-1]);
		ans2=max(ans2,maxn[i][i+n-1]);
	}
	printf("%d\n%d\n",ans1,ans2);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一道经典的动态规划问题。我们可以定义一个二维数组dp,其中dp[i][j]表示将第i堆到第j堆石子合并成一堆的最小得分。显然,当i=j时,dp[i][j]=,因为只有一堆石子不需要合并。 当i<j时,我们可以枚举k,表示在第k堆和第k+1堆之间进行合并,此时得分为sum[i][k]+sum[k+1][j]+a[i]*a[k+1]*a[j+1],其中sum[i][j]表示第i堆到第j堆石子的总数,a[i]表示第i堆石子的数量。我们需要选择得分最小的一次合并,即dp[i][j]=min(dp[i][j], dp[i][k]+dp[k+1][j]+sum[i][k]+sum[k+1][j]+a[i]*a[k+1]*a[j+1])。 最终,dp[1][N]即为将N堆石子合并成一堆的最小得分。 ### 回答2: 这道题是一个经典的动态规划问题,可以使用递推方法进行求解。 首先定义一个二维数组dp[i][j]表示合并从第i堆到第j堆石子的最小得分。因为每次合并只能选相邻的两堆石子,所以合并i到j这个区间的方法可以分成两个子区间i到k和k+1到j,其中i<=k<j。那么合并i到j的得分就是合并i到k的得分加上合并k+1到j的得分再加上区间i到j这个新合成的得分,即dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j],其中sum[i][j]表示i到j这个区间内石子数的总和。 因为每次合并只选相邻的两堆石子,所以k的范围只能是[i,j-1],因此需要在这个范围内枚举k,找到使得dp[i][j]最小的那个k,即dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j])。最后dp[1][N]即为所求的最小得分。 由于该算法需要枚举每个区间内的可能的k值,时间复杂度为O(N^3),但可以通过优化减小时间复杂度,比如在枚举k值时使用动态规划的方式预先计算出dp[i][k]和dp[k+1][j]的值,避免重复计算,此时时间复杂度为O(N^2)。 ### 回答3: 这是一道典型的动态规划问题。我们定义“dp[i][j]”表示将第i堆到第j堆石子合并成一堆的最小得分,显然,当i=j时,dp[i][j]=0,因为只有一堆石子可以合并。当i<j时,我们可以尝试从i到j中的任意一点k作为最后一步合并的位置,此时,有以下几种情况: 1. 合并i到k和k+1到j的石子 此时的得分为:dp[i][k]+dp[k+1][j]+sum[i][j],其中sum[i][j]表示第i堆到第j堆石子的总数。因为最后一步合并时,i到k和k+1到j的石子都已经合并了,所以得分应该加上这些石子的总数。 2. 合并i到k-1和k到j的石子 此时的得分为:dp[i][k-1]+dp[k][j]+sum[i][j],同样地,因为最后一步合并时,i到k-1和k到j的石子都已经合并了,所以得分应该加上这些石子的总数。 我们需要在所有的可能合并的位置中选取得分最小的一次合并,即: dp[i][j] = min{dp[i][k]+dp[k+1][j]+sum[i][j], dp[i][k-1]+dp[k][j]+sum[i][j]},其中i≤k<j。 最终的答案就是dp[1][N]。时间复杂度为O(N^3),空间复杂度为O(N^2)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值