题目描述
栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机数{Xn}:
X[n+1]=(aX[n]+c) mod m
其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数总是由上一个数生成的。
用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C++和Pascal的产生随机数的库函数使用的也是这种方法。
栋栋知道这样产生的序列具有良好的随机性,不过心急的他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,...,g-1之间的,他需要将X[n]除以g取余得到他想要的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。
输入输出格式
输入格式:输入包含6个用空格分割的整数m,a,c,X[0],n和g,其中a,c,X[0]是非负整数,m,n,g是正整数。
输出一个数,即X[n] mod g
输入输出样例
输入样例#1:
11 8 7 1 5 3
输出样例#1:
2
说明
计算得X[n]=X[5]=8,故(X[n] mod g) = (8 mod 3) = 2
100%的数据中n,m,a,c,X[0]<=10^18,g<=10^8
裸的矩阵快速幂。。。
注意到输入是 long long 类型,所以快速幂的 乘 改成 快速加。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
unsigned long long n,m,a,c,x0,g;
struct node{
unsigned long long a[3][3];
}base,ans;
inline long long read(){
long long date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
unsigned long long mul(unsigned long long x,unsigned long long y,unsigned long long p){
unsigned long long s=0;
while(y){
if(y&1)s=(s+x)%p;
x=(x<<1)%p;
y>>=1;
}
return s;
}
node operator *(const node &x,const node &y){
node ret;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++){
ret.a[i][j]=0;
for(int k=1;k<=2;k++){
ret.a[i][j]+=mul((x.a[i][k]%m),(y.a[k][j]%m),m)%m;
ret.a[i][j]%=m;
}
}
return ret;
}
void mexp(long long k){
while(k){
if(k&1)ans=ans*base;
base=base*base;
k>>=1;
}
}
int main(){
m=read();a=read();c=read();x0=read();n=read();g=read();
base.a[2][1]=0;base.a[1][1]=base.a[1][2]=1;base.a[2][2]=a%m;
ans.a[1][1]=c%m;ans.a[1][2]=x0%m;
mexp(n);
printf("%lld\n",ans.a[1][2]%g);
return 0;
}