自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小工匠

show me the code ,change the world

  • 博客(2551)
  • 资源 (12)
  • 收藏
  • 关注

原创 小工匠聊架构文章一览【不间断持续更新】

文章摘要 本文系统梳理了微服务架构与分布式技术的核心知识体系,包含三大板块: 微服务布道系列:详细解析从单体架构到服务化的演进路径,涵盖服务注册发现、RPC调用、监控追踪等12个核心主题; 分布式理论篇:深入剖析CAP定理、BASE理论、Paxos算法等分布式系统基石理论; 分布式实战篇:聚焦事务、服务、缓存、存储四大场景,提供两阶段提交、TCC模型、热点key治理等20余种解决方案。文中配有清晰的技术架构图,每个主题均附详细技术文章链接,形成完整的技术图谱。

2020-11-12 00:01:55 90480 10

原创 AIGC - KnowFlow v2.3.0 的多模态视频解析能力与工程化实践

2025年企业级RAG系统正从纯文本向多模态知识库演进。KnowFlow v2.3.0实现了视频作为可检索的一等公民数据源,通过五阶段流水线(ASR转写、关键帧提取、智能切片、VLM描述、Chunk组装)将视频转化为结构化知识。该系统采用Whisper ASR作为主模态,配合关键帧压缩和智能切片策略,使视频内容可精准检索定位。此次升级还优化了UI权限体系,降低部署成本,为企业构建可落地的多模态知识基础设施提供了完整解决方案。

2025-12-23 06:27:16 656

原创 LLM - 基于 Spring AI Alibaba Graph 重构多智能体订单助手:从单体 Agent 到图工作流的工程实践

本文介绍了如何利用Spring AI Alibaba Graph将多智能体订单助手重构为图工作流形态。传统基于if-else的编排方式存在维护困难、扩展性差等问题,而Graph方案通过StateGraph、Node、Edge和OverAllState四个核心概念,将复杂业务逻辑转化为清晰的可视化流程图。 文章详细说明了项目采用的多模块架构设计,包括ai-starter、ai-graph-order等模块的职责划分。重点阐述了订单助手Graph的设计思路,将业务拆分为入口节点、意图识别节点和多个Agent节点

2025-12-23 04:45:00 1714

原创 LLM - 从生成式到 Agentic (Java技术栈)

2025年成为AI Agent工程化与产业化的关键拐点,技术从生成式AI向Agentic AI演进,重点转向工具调用、记忆、规划与多智能体协作等系统能力。Spring AI等框架推动Java工程实践落地,典型应用场景覆盖金融、客服、工业等领域。智能体需具备四大核心能力:工具调用(驱动API/数据库)、记忆(维持长期交互)、规划(任务拆解与执行)、多智能体协作(角色分工)。产业应用已从试点转向可量化ROI阶段,但仍面临数据隐私、系统集成与风险治理等挑战。Spring AI多Agent Demo展示了订单助手场

2025-12-22 05:45:00 1244

原创 LLM - 从 RAG 到 Context Engine:2025 实战总结与 2026 落地指南

以“实战向”视角,聚焦三个问题: 1. 如何搭一个现代 RAG 系统,而不是“向量库 + Embedding”拼凑品。 2. 如何把 RAG 升级为支撑 Agent 的 Context Engine,接管知识库、Memory 和 Tool Retrieval。 3. 2026 年要不要上多模态 RAG,上了怎么活下来(成本与工程挑战)。

2025-12-22 05:00:00 1121

原创 LLM - 从 Prompt 到 Context:2026 Agent 时代的核心战场

2025年大模型Agent从概念走向爆发,但多数产品仍停留在Demo阶段。Anthropic在AWS re:Invent上提出了2026年Agent发展的三大方向:更强的模型能力、可长时运行的Agent以及GUI操作能力,并提出以Context Engineering为核心的方法论。关键突破包括模型能力显著提升(SWE-bench得分从49%到80%)、成本逻辑从单价思维转向任务总成本思维,以及安全能力的强化。Agent与传统Workflow的根本区别在于运行时决策权归属,其本质是"模型+工具+循

2025-12-20 17:15:00 1396

原创 LLM - 从 GPU 到智能应用:构建 AI 系统的五层技术栈不完全指北

许多团队在做 AI 应用时都有类似体验:模型参数越来越大、能力越来越强,但真正落地时,却频频遭遇“跑不动、接不进业务、用户不用”的尴尬局面。背后原因往往不是“模型不够强”,而是缺少从硬件到应用的全栈视角,忽略了基础设施、数据、编排和产品形态之间的系统性关系。本文面向开发者、架构师和技术决策者,从一个真实的场景出发,系统拆解 AI 技术栈的五个关键层次,并给出选型思路、实践建议与成本权衡。如果只盯着某一个“最强模型”,AI 系统很容易陷入“看起来很厉害,但实际用不起来”的陷阱。

2025-12-20 12:34:39 892

原创 LLM - 从 Claude Code Agent Skills 看通用代理的现实路径:设计理念、工程实现与未来形态

Claude Skills 是一种创新的模型扩展机制,通过 Markdown+YAML+脚本的组合,让大模型具备稳定执行专业任务的能力。其核心价值在于: 模块化技能封装:将专业任务知识打包成可复用的"技能包",包含结构化元数据(YAML)、详细说明(Markdown)和可执行脚本。 高效知识管理:采用"元数据索引+按需加载"机制,大幅降低token消耗,支持海量技能共存。 自然执行流程:模型通过阅读说明自主调用脚本,在代码解释器环境中实现完整任务闭环。 相比传统插件系

2025-12-19 05:45:00 2837 3

原创 LLM - Prompt Engineering 构建工业级 LLM Agent 的六维结构化框架

本文深入探讨了面向开发者的结构化Prompt设计方法,提出Agent设计的六维框架:角色、上下文、流程、边界、约束和示例。通过角色设定激活模型专业子空间,分层管理上下文状态,显式定义任务流程步骤,明确划定职责边界,严格规范输出格式,并利用少样本学习提升性能。文章以代码审查Agent为例,展示了如何将这六大维度整合为可落地的工程化Prompt方案,帮助开发者构建稳定可控的AI交互系统。

2025-12-19 04:30:00 1659

原创 LLM - 面向开发者的 Prompt 设计:从“一次成稿”到“对抗式收敛”

摘要: 本文系统介绍了Prompt工程化设计方法,帮助开发者从“随手提问”升级为“对抗式收敛”的迭代工作流。核心观点包括: 结构化Prompt:将自然语言指令转化为包含背景、任务目标、输入约束、输出格式和示例的五要素“规格说明书”,提升模型输出的稳定性; 迭代优化:通过诊断问题、针对性修正和自我反馈(Self-Refine)循环,逐步逼近理想结果; 设计原则:强调清晰具体、任务分解、结构化输出和示例示范,避免模糊指令; 团队协作:建议将Prompt模板化、版本化管理,建立可复用的团队资产库,并通过A/B测试

2025-12-18 05:45:00 1016

原创 LLM - 基于技术方案的 AI 开发新范式

AI编程新范式:技术方案驱动的全链路代码生成 本文探讨了AI编程从"对话式写代码"向"技术方案驱动"的范式转变。针对Java+Spring Boot团队,提出五步闭环流程:1)结构化技术方案作为AI"施工图";2)建立规范化规则索引;3)集成内部工具与知识;4)人机协同代码生成与校验;5)AI自我总结形成闭环。实践表明,这种结构化方法可使AI代码采纳率显著提升,同时让开发者从重复编码转向更高价值的设计工作。落地时建议从小型试点开始,逐步构建团队专属

2025-12-18 04:45:00 1095

原创 LLM - AI Agent的上下文工程(Context Engineering)不完全指北

本文探讨了AI Agent从Demo到生产环境面临的核心挑战——上下文工程(Context Engineering)。文章指出,当前AI系统的主要瓶颈不在于模型能力,而在于如何高效管理上下文窗口中的信息流动。作者分析了上下文窗口的本质限制,揭示了四种典型失败模式(污染、分散、混淆、冲突),并提出了构建生产级AI Agent的六大支柱框架:Agent编排中枢、查询增强、智能检索、提示技术、记忆系统和工具集成。文章强调,上下文工程是确保AI系统在真实场景中保持稳定性和可靠性的关键,需要从战略层面设计信息的选择、

2025-12-17 06:15:00 1036

原创 LLM - 从定制化 Agent 到通用 Agent + Skills

摘要 大模型应用团队普遍面临Agent维护成本高、复用率低的问题。Anthropic提出的Agent Skills方案采用全新路径:构建通用Agent,通过可组合Skills沉淀专业知识。Skills采用结构化文件系统存储,包含元数据、指令文档、脚本和示例,实现知识模块化管理。相比传统长prompt方式,Skills方案具有渐进式加载、代码执行不占上下文、可组合性等优势。该方案将领域知识与智能解耦,通过三层加载机制平衡无限技能与有限上下文,使Agent更专注于决策而非流程描述。最终实现从领域专用Agent向

2025-12-17 04:45:00 1867

原创 LLM - Spring AI × Anthropic Skills

本文介绍了如何将外部技能(Skill)集成到基于Spring AI的智能体(Agent)中。通过Java封装Python脚本作为可调用函数,并利用Spring AI的Function/Tool Calling功能,使大语言模型能够自主决定何时调用特定技能。 主要内容包括: 定义技能请求/响应DTO模型 通过ProcessBuilder调用Python技能脚本 将技能工具注册为Spring Bean 配置ChatClient让Agent自动选择技能 文章以内部数据分析和代码评审两个技能为例,展示了端到端的集成

2025-12-16 06:30:00 1086

原创 LLM - Agent Skills 案例:内部数据分析

本文介绍了一个面向企业内部数据分析场景的智能体(Skill)设计示例。该Skill包含完整的工作流程:从需求澄清、数据查询到分析报告生成。核心内容包括: 标准化目录结构,包含技能说明文档(SKILL.md)、执行脚本和资源文件 详细的工作流程设计,分6个步骤完成数据分析任务 两个关键脚本:run_query.py用于执行SQL查询,clean_and_aggregate.py用于数据清洗和聚合 输出结构化分析报告模板,包含摘要、关键指标、洞察建议等部分 该Skill强调数据合规性、指标口径统一性和分析结论的

2025-12-16 04:45:00 1597

原创 LLM - Agent Skills 案例:PR 代码评审 Skill

本文介绍了一个面向开发者的PR代码评审智能体Skill完整示例,包含以下核心内容: 目录结构:展示了一个标准Skill的组成,包括核心说明文件、脚本和资源目录。 SKILL.md模板:提供了可直接套用的YAML+Markdown模板,包含: 元数据定义(名称、描述、输入输出等) 详细评审流程(5个关键步骤) 静态检查脚本使用说明 资源文件交互方式 输出格式规范 示例脚本:给出了一个Python静态检查脚本框架,可检测函数长度和嵌套深度等基础问题。 该示例完整展示了一个代码评审智能体Skill的开发范式,开发

2025-12-15 06:00:00 806

原创 LLM - Agent Skills 智能体新范式

摘要: Agent Skills 是 Anthropic 提出的新型 AI 技能系统,通过结构化文件夹(含说明文档、脚本和资源)封装可复用的任务流程,解决了当前 Agent 开发中知识难以沉淀、上下文爆炸和生态割裂的问题。其核心机制"渐进式披露"分层加载技能内容,平衡了上下文开销与执行精度。相比传统工具调用和 RAG,Skills 更强调"如何做"的完整工作流,可转化为组织级可执行资产。开发者可通过拆解高频任务、结构化步骤和脚本化关键操作来构建有效 Skill,推动

2025-12-15 05:15:00 2135 3

原创 LLM - 六大 Agent 设计模式:从 ReAct 到 Agentic RAG 的完整工程实践指南

摘要:本文系统梳理了多模态AI Agent的6大设计模式,包括ReAct(推理与工具调用闭环)、Self-Reflection(自我评估提升质量)、MCP Tool Use(轻量级工具集成)、CodeAct(可执行代码替代JSON)、Multi-Agent Workflow(多智能体协作)和Agentic RAG(智能化检索策略)。这些模式可组合应用,将单一对话模型升级为具备自主思考、工具调用、协作与检索能力的智能系统。文章从工程落地角度分析了各模式的原理、适用场景及实践建议,强调通过模块化设计和安全控制实

2025-12-14 11:30:00 1852

原创 LightRAG - 从传统 RAG 到 LightRAG:双层检索与知识图谱在企业问答中的实践

摘要: LightRAG针对企业问答场景,提出“向量检索+知识图谱”的双层检索架构,弥补传统RAG在跨文档推理和全局一致性上的不足。其核心是通过实体关系图增强检索能力,支持局部(chunk向量)、全局(图结构)及混合检索模式,兼顾效率与逻辑连贯性。系统采用模块化存储设计,支持增量更新,适应企业数据动态变化。相比传统RAG仅依赖文本片段检索,LightRAG通过显式建模实体关联,显著提升复杂查询(如跨系统业务分析)的准确性,同时保持工程轻量化,成为企业知识管理的高效解决方案。

2025-12-14 09:15:00 928

原创 LLM - 从 LLM 到 RAG、Agent、MCP 的一体化工程实践

企业大模型应用正从对话转向任务闭环,需要整合LLM、RAG、Agent和MCP等技术构建可落地的AI基础设施。LLM作为基础能力组件,企业应采用"云端+本地"混合部署策略;RAG通过检索增强让模型理解业务知识;Agent赋予系统规划执行能力;MCP协议实现工具和数据标准化接入。典型架构分为数据层、AI能力层、Agent层和应用层,需兼顾安全治理与业务需求。以知识助手为例,展示了从检索到任务执行的端到端流程。未来趋势将聚焦AI与核心业务的深度融合,以及开发流程的标准化。

2025-12-14 07:00:00 2126

原创 LLM - 智能体驱动的 Agentic RAG

企业级Agentic RAG系统正从简单的问答转向复杂的业务决策执行。相比传统RAG,它通过引入多智能体协作机制,实现了任务分解、工具调用和流程编排能力。系统架构包含交互层、智能体运行时层和数据检索层,采用Planner、Retrieval、Tool等Agent角色分工协作。Java/Spring技术栈可通过统一接口、策略模式实现灵活路由,并注重安全审计、权限控制和可观测性。这种架构将文档检索与动态系统查询统一为"工具",支持复杂企业场景下的可靠决策执行。

2025-12-14 05:45:00 1005

原创 LLM - 从 Prompt 到上下文工程:面向 Java 的生产级 AI Agent 设计范式

本文探讨了如何构建安全、可控的生产级AI Agent系统。文章指出,当前大模型已具备接近工程师的编程能力,但落地难点在于系统安全性、权限控制和可持续运行。重点分析了Prompt注入威胁及多层防御策略,强调工具设计、调用策略和上下文工程的关键作用。针对长任务场景,提出了压缩、外部记忆和子Agent三板斧解决方案。最后为Java开发者提供了架构建议,包括上下文管理、安全控制和任务调度三层设计。附Anthropic/Claude相关工程文档索引,涵盖Agent SDK、上下文工程及长任务可靠性设计等实用资源

2025-12-13 20:54:04 1093

原创 LLM - MCP Powered Agent_从工具失配到架构重构的实战指南

本文探讨了AI Agent在多工具环境下的优化策略。针对工具数量增加导致的选择困难和性能下降问题,提出了分层架构设计:将工具发现与调用解耦为两阶段流程,引入中间层进行工具检索和路由;建议采用程序化脚本编排工具调用,使用GraphQL等统一接口收敛零散工具;提出建立分层Agent体系,由顶层协调Agent、领域专属Agent和底层工具平面组成。文章还给出了MCP工具设计的具体建议,包括合理控制工具粒度、规范命名描述、结构化返回数据等。最终强调,提升Agent效能的关键不在于工具数量,而在于优化工具的组织架构和

2025-12-13 20:16:54 892

原创 Elasticsearch - UNASSIGNED SHARDS 解决方案不完全指北

Elasticsearch的allocate_stale_primary命令用于在主分片不可用且无最新副本时,强制将过期副本提升为主分片以恢复服务。该操作通过_cluster/reroute接口执行,需显式设置accept_data_loss:true确认可能的数据丢失风险。执行流程包括:确认分片状态、查找可用副本节点、执行强制分配命令。该操作可能导致数据回退,且后续若更完整数据节点重新加入,可能被覆盖造成不可逆损失。建议仅在无法恢复最新数据且接受数据丢失时使用。

2025-12-13 11:21:49 974

原创 Elasticsearch - Reroute 深度剖析:分片调度与集群恢复不完全指北

Elasticsearch Reroute机制解析与实践指南 本文深入探讨Elasticsearch集群管理中的关键手动干预机制——reroute。主要内容包括: 机制原理:分析reroute在ES分片调度系统中的作用,解释其如何绕过自动调度的保守策略实现快速恢复。 应用场景: 主分片丢失时的灾难恢复 集群负载均衡与扩容 节点下线与维护迁移 API详解:提供move、allocate_primary、allocate_stale_primary等核心操作的可执行示例。 决策系统:剖析Allocation D

2025-12-12 15:30:00 1228

原创 ElasticSearch - 分片灾难恢复实战:不重启ES集群极限磁盘级数据抢救

本文介绍了在ElasticSearch集群出现主副本分片同时unassigned时的数据恢复方案。当系统文件句柄耗尽导致分片不可分配时,虽然磁盘数据仍存在,但ES会因安全验证失败而拒绝自动恢复。文章详细解析了两种底层恢复机制:allocate_stale_primary(从磁盘恢复可能回滚数据)和allocate_empty_primary(重建空分片),并给出了工程化的恢复流程,包括系统修复、分片检查、逐分片恢复策略表等关键步骤。最后强调恢复后的数据校验和集群加固措施,指出掌握磁盘级恢复技术对保障搜索系统

2025-12-12 10:52:36 1036

原创 大模型开发 - AgentScope Java v1.0 深度解读

摘要: 阿里发布 AgentScope Java v1.0,为企业级AI Agent开发提供Java生态解决方案。其核心设计包括: 分层范式:融合确定性工作流(L1)、ReAct自主规划(L2)和实时人工介入(L3),平衡控制与智能; 工具管理:通过Group与Meta-Tool结构化API,结合Java并发模型实现异步并行调用; 企业级基建:集成安全沙箱、RAG记忆系统和多Agent协作协议(MCP/A2A),确保生产级可靠性; 性能优化:支持GraalVM原生镜像,提供全链路可观测与数据飞轮闭环。 Ag

2025-12-09 23:24:51 1352

原创 LLM - 主流RAG优化思路解析

本文系统介绍了大模型RAG(检索增强生成)的优化策略,提出分层渐进的方法:首先优化数据质量与文本切分,采用语义分割和元数据增强;其次提升检索层性能,通过嵌入模型微调、混合检索和重排序;然后改进查询理解与改写,利用LLM扩展查询和结构化提示;最后进阶架构设计,包括上下文管理、知识图谱和自检机制。强调评估体系建设和迭代优化的重要性,建议从基础优化入手逐步升级,重点关注嵌入模型微调和重排序等高效方案。

2025-12-09 22:54:08 987

原创 LLM - A2A 多 Agent 协作 与 Memory

本文探讨了多Agent协作(A2A)系统的设计重点与挑战。随着任务复杂度提升,单一"超级Agent"面临瓶颈,Google提出通过专业Agent分工协作来分解系统复杂度。文章分析了角色分工、流水线和专家团队三种协作模式,并指出多Agent系统需解决调度死锁、可观测性和权限控制等工程挑战。在Memory设计方面,强调区分短期/长期记忆层级,设计私有/共享记忆空间,并通过A2A协议实现记忆交互。最后建议在架构层面优先考虑多Agent分工,明确协作模式与记忆边界,构建可观测、可演化的Agent

2025-12-08 05:00:00 1386

原创 LLM - Google 5-Day AI Agents Intensive

摘要: 2025年AI应用从对话助手转向能自主规划、执行复杂任务的AI Agent系统。Google推出的5-Day AI Agents Intensive课程聚焦Agent架构设计,涵盖工具调用、记忆管理、多Agent协作等核心模块。典型Agent包含感知、决策、执行和记忆四大组件,通过编排器协调任务流。Google生态技术栈(如Gemini模型、MCP协议、ADK工具)支持开发者构建生产级Agent系统,强调工程化思维而非单纯Prompt优化。示例伪代码展示了任务管理Agent的设计逻辑,突出工具定义、

2025-12-07 22:06:18 1238

原创 LLM - AI Agent 学习路线图:从 RAG 到多智能体实战

摘要 本文系统介绍了AI Agent的学习路线图,从基础LLM与RAG入门到多智能体实战,分为四个阶段:LLM基础与RAG、Agentic RAG与单Agent决策、多模态与语音Agent、多Agent协作与企业级落地。每个阶段推荐了对应的开源项目和资源,强调通过实践反推知识体系。文章还提供了4-8周的学习规划建议,帮助开发者从工具调用进阶到架构设计能力,最终形成工程方法论。核心在于理解Agent的决策机制、工具生态与落地实践,而非仅停留在Demo层面。

2025-12-07 21:53:11 962

原创 Vibe Coding - Fission-AI OpenSpec 面向 AI 编程助手的规范驱动开发

OpenSpec是一种规范驱动开发(Spec-Driven Development)方法,专为AI编程助手设计。它通过轻量级规范工作流,在编写代码前锁定开发意图,确保输出可预测且可审查。核心价值包括:提前对齐规范、结构化变更管理、共享可见性,并兼容主流AI工具。OpenSpec特别擅长修改现有功能(1→n场景),通过分离规范源和变更提案简化跨规范更新。工作流程分为提案起草、评审对齐、任务执行和归档更新四步,支持原生斜杠命令或AGENTS.md集成。安装只需全局CLI工具和项目初始化,即可开始创建、验证和实现

2025-12-07 21:13:32 1262

原创 大规模数据处理:19_ Spark应用 :WordCount实战

在大数据处理的浩瀚海洋中,Apache Spark犹如一艘装备精良的航空母舰,以其卓越的内存计算能力和丰富的API生态,成为数据工程师和科学家的首选工具。虽然Python和Scala在Spark社区中广受欢迎,但Java凭借其企业级特性和广泛的开发人员基础,同样是一个强大且实用的选择。

2025-12-02 06:00:00 824

原创 大规模数据处理:18_Structured Streaming:实时数据处理的新纪元与工业级实践

Apache Spark作为最流行的大数据处理框架,其流处理能力经历了从Spark Streaming到Structured Streaming的演进。Structured Streaming自2016年在Spark 2.0中推出以来,凭借其统一的批流处理API、强大的事件时间处理能力和企业级可靠性,已成为实时数据分析的事实标准。在本文中,我们将深入探讨Structured Streaming的核心架构、实践应用及性能优化策略,助你构建高效的实时数据管道。

2025-12-02 04:45:00 1041

原创 大规模数据处理:17_Spark Streaming:构建高可用实时数据处理系统

在当今数据驱动的世界中,实时数据处理能力已成为企业核心竞争力的重要组成部分。本文深入剖析Spark Streaming的核心原理、架构设计、API使用及性能优化策略,并通过对比分析其与同类技术的差异,帮助读者构建高效、稳定的实时数据处理系统。

2025-12-01 06:00:00 1072

原创 LLM - 速度与智能的平衡:构建高并发、高可靠的意图识别系统架构实战

本文提出了一套企业级对话系统意图识别解决方案,针对响应速度、识别准确率和模糊口语理解三大挑战,设计了多层漏斗匹配架构和歧义消解策略。架构层面采用四级分层:L1缓存层实现毫秒级响应,L2规则层处理结构化指令,L3向量语义层作为核心识别引擎,L4大模型层兜底复杂场景。在准确性方面,系统通过知识图谱、句法分析和上下文记忆实现自动消歧,并设计分级澄清话术进行主动确认。这种分层治理与精准消歧相结合的方法,有效平衡了性能、成本和用户体验,为构建高可靠意图识别系统提供了实践指南。

2025-12-01 05:00:00 1367

原创 大规模数据处理:16_Spark SQL:大数据处理的查询利器与最佳实践

在Spark生态中,Spark SQL作为核心组件,为开发者提供了结构化数据处理的统一接口,实现了批处理、流处理、机器学习和图计算的数据无缝流转。它不仅继承了Spark的分布式计算能力,还融合了关系型数据库的查询优化技术,使得数据分析师和工程师能够以熟悉的SQL语法高效地处理PB级数据。

2025-11-30 10:40:00 1214

原创 LLM - 知识图谱与 Agent AI 如何重塑复杂意图识别

本文探讨了下一代对话系统如何突破传统对话状态追踪(DST)的局限,通过融合知识图谱(KG)和Agent AI技术实现更智能的交互。传统DST依赖预设槽位填充,难以处理用户思维跳跃和非线性对话。知识图谱通过多跳推理连接隐式关联,解决语义孤岛问题;Agent AI则凭借ReAct框架的动态规划能力,实现意图切换和任务重排。文章提出"铁三角"架构,将Agent AI作为控制核心,结合KG的长期记忆和DST的短期状态维护,构建能理解复杂对话的智能系统。这种融合方案使系统具备实体推理和动态调整能力

2025-11-30 05:30:00 2112

原创 LLM - RAG的文本分块最佳实践:原理、细节与工程化落地

本文深入探讨了RAG系统中文本分块的关键技术与优化策略。针对机械切分导致的语义断裂问题,提出基于语义完整性的智能分块原则,并对比基础版与进阶版分块算法的差异。通过引入内容类型识别、段落智能合并和动态Token控制,有效解决了表格/图片拆分、层级丢失等典型问题。文章还提供了可直接落地的代码实现,并强调分块策略对RAG系统召回率和准确率的重要影响。最后指出,贴近人类阅读方式的语义重构是提升AI理解能力的关键,掌握这些工程实践对开发者适应AI时代至关重要。

2025-11-29 06:30:00 1199

原创 大规模数据处理:15_弹性分布式数据集(RDD)_Spark大厦的地基与现代数据处理核心(下)

随着大数据时代的到来,分布式计算已经成为技术创新与产业应用的核心驱动力。Apache Spark 作为新一代大规模数据处理引擎,以其强大的内存计算性能与多样化 API 备受关注。而在 Spark 构建的大厦中,**弹性分布式数据集(RDD, Resilient Distributed Dataset)**无疑是最坚实的地基,贯穿 Spark 的整个设计与实现。

2025-11-29 05:15:00 1376

Redis 8.2.2 windows-x64

Redis 8.2.2 windows-x64

2025-10-18

Redis 8.0.3 是高性能的 Key-Value 缓存数据库,本版本为社区适配的 Windows 平台编译版本,适用于开发环境或测试用途

Redis 8.0.3 基于官方 Linux 源码移植编译,具有以下特点: 高性能:基于 IOCP(I/O Completion Ports)异步模型,充分利用多核和异步网络能力。 易部署:提供单一可执行文件,无需额外依赖,支持以服务模式运行。 开发友好:与 Linux 版本协议兼容,可在本地 Windows 环境进行功能测试与性能验证。

2025-07-12

版本 8.0.3 国产4种架构 x86arm64loongarchmips

## 8. 通用四种架构支持 ### 8.1 x86(Intel / AMD) * **架构类型**:标准 x86\_64(也兼容 x86\_32,编译时默认关闭 32 位) * **OS 支持**:主流 Linux 发行版(CentOS、Ubuntu、Debian)、Windows(社区版) * **编译选项**: ```bash make BUILD_TLS=openssl CFLAGS="-march=x86-64-v2 -O2" LDFLAGS="" ``` * **优化建议**: * 启用 `jemalloc`:`make BUILD_TLS=openssl MALLOC=jemalloc` * 开启 CPU 指令集优化:`-march=x86-64-v3` 或更高 * 调整 `tcp-backlog`(如 4096)与 `net.core.somaxconn` 系统参数 * **注意事项**: * Windows 社区版仅支持 x86\_64,可用命令行模式或服务模式运行 * 在老旧 CPU(不支持 AES-NI)上,AOF 加密和 SSL 性能会受影响

2025-07-11

国产 四种架构 Keepalived

国产 四种架构 Keepalived

2025-07-11

Redis 7.4.1 Windows 版本

Redis 7.4.1 Windows 版本

2024-10-10

「Tomcat源码剖析」.pdf

Tomcat源码剖析 : 整体架构 层层分析 源码解析 架构分析 (Http服务器功能:Socket通信(TCP/IP)、解析Http报文 Servlet容器功能:有很多Servlet(自带系统级Servlet+自定义Servlet),Servlet处理具体的业务逻辑)

2020-06-01

Scalable IO in Java

NIO - Scalable IO in Java

2023-11-10

腾讯万亿级 Elasticsearch 架构实践

腾讯万亿级 Elasticsearch 架构实践

2023-07-24

实时分析引擎&实时分析引擎

实时分析引擎

2023-07-24

MQ对比:Kafka VS Rocketmq VS Rabbitmq.pdf

MQ对比:Kafka VS Rocketmq VS Rabbitmq 超详细 ,值的收藏,参考资料

2019-11-04

elasticsearch-analysis-ik-6.4.1.zip

修改ik分词器源码,支持从mysql中每隔一定时间,自动加载新的词库

2019-08-20

中标龙芯-MIPS- NFS rpm包

gssproxy-0.7.0-4.ns7_4.mips64 keyutils-1.5.8-3. libbasicobjects-0 libcollection-0.6 libevent-2.0.21-4 libini_config-1.3 libnfsidmap-0.25- libpath_utils-0.2 libref_array-0.1. libtirpc-0.2.4-0. libverto-libeventm nfs-utils-1.3.0-0m quota-4.01-14.ns7 quota-nls-4.01-14 rpcbind-0.2.0-42. tcp_wrappers-7.6

2020-11-24

X86-NFS rpm包

gssproxy-0.7.0-21.el7.x86_64.rpm keyutils- libbasicobjects-0 libcollection-0.6 libevent-2.0.21-4 libini_config libnfsidmap libpath_utils-0.2 libref_array-0.1. libtirpc-0.2.4-0. libverto-libeventm nfs-utils-1.3.0-0m quota-4.01-14.ns7 quota-nls-4.01-14 rpcbind tcp_wrappers

2020-11-24

apache-tomcat-8.5.50-src.zip

Tomcat启动流程分析 组件的生命周期管理 用Lifecycle管理启动、停止、关闭 Lifecycle接口预览 几个核心方法 Server中的init方法示例 为啥StandardServer没有init方法 LifecycleBase中的init与initInternal方法 为什么这么设计? 分析Tomcat请求过程 链接器(Connector)与容器(Container) 解耦 Connector设计 监听服务端口,读取来自客户端的请求 将请求数据按照指定协议进行解析 根据请求地址匹配正确的容器进行处理 将响应返回客户端 Container设计 Servlet容器的实现。

2020-06-02

Nginx1.14.2 + zlib + pcre + openssl

1. nginx 主软件 和 3个依赖包 zlib + pcre + openssl

2019-03-12

mybatisSource.zip

MyBatis源码功能演示环境 ,演示MyBatis的Executor 、StatementHandler 、 SQL映射、对象转换 等核心功能

2020-06-14

Spring4CachingAnnotationsExample

Spring4CachingAnnotationsExample的示例,通过Java注解的方式整合EhCache框架

2017-10-04

Jest-5.3.4.zip

Jest是Elasticsearch 的Java Http Rest 客户端。 ElasticSearch已经具备应用于Elasticsearch内部的java API,但是Jest弥补了ES自有API缺少Elasticsearch Http Rest接口客户端的不足。 Jest 配置ES 集群 示例代码 及源码解读 - 核心原理 - NodeChecker源码解读 -

2020-01-19

Java反编译工具

jd-gui.exe使用C++开发,主要具有以下功能: 一、支持众多Java编译器的反编译; 二、支持对整个Jar文件进行反编译,并本源代码可直接点击进行相关代码的跳转;

2015-06-04

ORACLE_AWR报告详细分析

ORACLE_AWR报告详细分析

2016-09-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除