- 博客(2589)
- 资源 (20)
- 收藏
- 关注
原创 小工匠聊架构文章一览【不间断持续更新】
文章摘要 本文系统梳理了微服务架构与分布式技术的核心知识体系,包含三大板块: 微服务布道系列:详细解析从单体架构到服务化的演进路径,涵盖服务注册发现、RPC调用、监控追踪等12个核心主题; 分布式理论篇:深入剖析CAP定理、BASE理论、Paxos算法等分布式系统基石理论; 分布式实战篇:聚焦事务、服务、缓存、存储四大场景,提供两阶段提交、TCC模型、热点key治理等20余种解决方案。文中配有清晰的技术架构图,每个主题均附详细技术文章链接,形成完整的技术图谱。
2020-11-12 00:01:55
91647
11
原创 大模型开发 - 零手写 AI Agent:深入理解 ReAct 模式与 Java 实现
本文介绍了从零搭建一个基于ReAct模式的AI Agent系统,深入解析其核心工作原理。ReAct模式通过将推理(Reasoning)与行动(Acting)交织,使AI具备自主思考和执行任务的能力。文章对比了ReAct与传统思维链(CoT)的区别,详细阐述了ReAct的执行循环流程,并通过具体示例展示了其工作方式。此外,还提供了系统架构设计思路,包括Prompt模板、LLM API客户端、工具系统等核心组件。该内容适合Java开发者、AI工程师和技术爱好者阅读,帮助理解如何构建一个能思考、调用工具并完成闭环
2026-02-02 21:00:00
438
原创 Vibe Coding - 从 “聪明的 Mahesh” 到 “靠谱的 Barry”:Anthropic Skills 如何重塑 AI Agent 的专业能力
主要介绍 Anthropic 提出的 Skills 概念,如何让 AI Agent 从“聪明但不懂业务”进化为“可积累经验的专业助手”
2026-01-26 06:00:00
1907
原创 Vibe Coding - 用 Superpowers 把 Claude Code 变成按流程交付的 AI 搭档
摘要: Superpowers为AI编程助手(如Claude/GPT)构建了一套工程化流程,解决其"会写代码但难交付"的痛点。通过将开发流程拆解为brainstorm→plan→implement→review→verify→ship六个标准化阶段,并封装为可复用技能(如需求澄清、计划生成、分步验证等),使AI能像专业工程师一样产出可验证的交付物。相比传统大prompt方案,这种结构化方法确保了需求对齐、变更可追溯和结果可验证,特别适合长期项目的协同开发。项目已在GitHub开源(obr
2026-01-26 05:15:00
1232
原创 Vibe Coding - 「skills.sh 时代」:Vercel 如何用 Agent Skills 重塑开发者工作流
摘要: 随着AI Agent的普及,开发者面临技能选择困难的问题。Vercel推出Agent Skills生态,通过统一规范、公共目录和排行榜解决这一痛点。Agent Skills是模块化插件,封装专业工作流程,让Agent按需加载。Vercel生态包括skills CLI(管理技能安装)、skills.sh目录站(搜索与排行)和开源技能集合(高质量标准件)。排行榜基于匿名安装数据,综合考量安装量、活跃度等维度,帮助开发者快速筛选优质技能,同时激励作者维护与创新。这一生态旨在让AI Agent从“能做事”升
2026-01-25 22:05:40
998
原创 Vibe Coding - 面向 Web 全栈开发者的 Claude Agent Skills 入门与实战
摘要: Claude Agent Skills 通过模块化能力包(SKILL.md+资源文件+脚本)实现AI技能的团队级复用,解决大模型在项目协作中的上下文遗忘与规范不一致问题。其核心设计采用渐进披露机制,按需加载技能内容以避免上下文过载。与项目说明书Claude.md、系统接口层MCP及专职子代理协同工作,形成完整的AI协作体系。以Next.js+Tailwind项目为例,可通过定制UI Review Skill实现自动化代码审查,结合Claude.md提供项目上下文,实现工程化落地。该方案特别适合需要稳
2026-01-25 21:51:38
963
原创 LLM - 从 Prompt 到 Skills
2025年,Claude Skills/AI技能模块成为技术新焦点,标志着AI从聊天工具向任务执行者的转变。与一次性指令Prompt不同,Skills是可复用、自动触发的AI能力单元,包含明确的能力边界、输入输出规范和触发策略。其爆火源于AI决策能力提升、Agent架构成熟及生态形成,使AI能真正替代人类完成任务。 当前实用Skills资源包括:Anthropic官方文档处理工具、社区精选导航站(如Awesome Claude Skills)、工程化工作流市场(Claude Skills Market
2026-01-11 22:34:08
2273
1
原创 LLM - 跑大模型到底要多大显存?一文讲透从原理到实战
摘要: 大模型时代,显存成为能否运行模型的首要门槛。本文系统分析显存消耗的四大来源:模型参数、中间激活、KV Cache和框架开销,并针对推理、微调、训练场景给出显存估算方法。例如,7B模型FP16推理约需18GB显存,轻量微调需24GB,而全参数训练显存需求呈数量级增长。选型建议:本地玩家可选8-24GB显卡运行7B/13B量化模型,团队服务需24-48GB显存支持长上下文与并发。合理估算显存需求是硬件规划的关键。
2026-01-11 22:22:22
1036
原创 Vibe Coding - AI 编程助手提示词工程实战:从“会问”到“会驱动”
摘要: 2026年全栈开发的核心竞争力在于AI提示词工程能力。本文基于Vibe Coding指南,提出将AI视为“技术强但缺乏项目背景的资深实习生”,而非搜索引擎,并系统化总结了高效提示词的七大原则:零预设(提供丰富上下文)、目标具体化(明确输入/输出)、任务拆解(分步解决)、举例说明(Few-shot)、角色扮演(切换视角)、多轮迭代(逐步优化)和代码清洁(统一风格)。通过“五步流程”——界定任务类型、准备上下文包、应用模板、多轮迭代和模板复用——开发者可将提示词工程融入日常开发,显著提升AI协作效率。
2026-01-11 22:16:18
936
原创 LLM - 从定制化 Agent 到 Universal Agent + Skills Library:下一代智能体架构实践
摘要: 大模型应用中的Agent架构正从「专用Agent堆叠」转向「通用Agent+技能库」范式。传统方案因上下文臃肿、维护成本高、知识无法复用而难以扩展。新架构以Universal Agent作为决策中枢,配合模块化Skills Library,实现能力的按需加载与组合。每个Skill包含元数据、详细指令和可执行资源,通过渐进式加载平衡上下文限制。该架构支持组织级知识沉淀,使新增能力只需添加Skill而无需修改Agent核心,为规模化落地提供了可行路径。
2026-01-11 21:52:37
1277
原创 LLM - Claude Code Skills 实战指南:用模块化“技能包”重构AI 开发工作流
摘要:AI工程化新范式——Claude Code Skills机制解析 本文系统阐述了Claude Code推出的Skills机制,这是AI工程化领域的重要创新。随着大模型能力提升,团队差异已从"模型智能度"转向"AI工作流集成能力"。Skills机制通过将AI能力拆解为可组合、可复用的"技能包",解决了传统Prompt方法存在的上下文冗余、行为不可预测等问题。文章详细分析了Skills的三层架构(元数据、指令层、资源层)和自动激活机制,并与Hoo
2026-01-10 23:03:25
2233
原创 LLM - A2UI:Google 引领的生成式 UI 革命
A2UI(Agent-to-User Interface)是Google推出的开源项目,通过JSON格式传输"界面意图"而非可执行代码,解决了AI生成UI的安全性和兼容性问题。核心优势包括:1)安全优先设计,采用声明式JSON和预审批组件目录;2)支持流式增量渲染,提升用户体验;3)框架无关性,同一JSON可在不同平台渲染为原生UI。A2UI为生成式UI提供了安全、高效、跨平台的解决方案,已在Google多个生产系统中应用。
2026-01-10 22:49:38
1589
原创 LLM - 将业务 SOP 变成 AI 能力:用 Skill + MCP 驱动 Spring AI 应用落地不完全指南
在大模型时代,Agent已从简单聊天机器人发展为能处理复杂任务的数字员工。Anthropic提出的Model Context Protocol(MCP)和Agent Skills(Skill)是关键解决方案:MCP标准化外部工具连接,Skill封装可复用任务流程。文章系统分析了传统工具调用的痛点,对比了MCP与Skill的分层协作关系,并通过两个实战案例(自动周报生成和结合Spring AI的数据分析)展示了如何构建实用AI Agent。MCP解决"怎么连"的问题,Skill解决&
2026-01-08 23:15:35
1492
原创 LLM - 从通用对话到自治智能体:Agent / Skills / MCP / RAG 三层架构实战
本文提出了一种三层智能体系统架构,使大模型从通用聊天工具升级为专业自治系统。架构包含:感知层(Agent负责任务拆解与RAG检索)、决策层(Skills封装领域知识与流程)、执行层(MCP标准化连接外部系统)。MCP作为统一接口协议,通过Tools/Resources/Prompts三种原语连接业务系统;Skills则将专家经验结构化,通过渐进式加载平衡性能与成本。该架构通过分层协作实现"可交付结果",推动AI从"会说话"到"会干活"的转变。
2026-01-08 22:44:11
2734
原创 Vibe Coding - 用 UI UX Pro Max 把你的 AI 编码助手变成“会设计”的前端搭档
UI UX Pro Max 是一个为AI编程助手设计的多平台设计知识库系统,它包含57种UI风格、95套行业配色、56组字体搭配和98条UX准则。该系统可将设计知识转化为React、Next.js等主流技术栈的代码实现,使AI能生成具有专业设计水准的界面。安装方式支持CLI一键安装或手动配置,通过Prompt指令即可让AI调用设计智库,输出符合特定行业和风格的UI代码。实战示例展示了如何生成专业SaaS登录页,包括风格选择、配色方案和完整组件代码。该系统弥补了AI在UI设计方面的短板,帮助开发者快速产出美观
2026-01-06 05:45:00
5247
原创 Vibe Coding - Frontend Design(Anthropic 官方)Skill 落地实战
本文介绍了Anthropic官方推出的Frontend Design技能,它能生成具有辨识度、可用于生产环境的前端界面。相比普通AI生成页面,该技能通过结构化设计决策体系,避免千篇一律的模板化布局,提供统一的设计语言和高质量的代码输出。文章详细讲解了安装方式、使用场景、设计优势,并与UI UX Pro Max进行了对比,指出Frontend Design更适合需要个性化视觉冲击力的项目。通过优化Prompt设计和迭代流程,开发者可以将其有效融入实际工作流,提高UI开发效率。
2026-01-06 04:45:00
3381
原创 Vibe Coding - UI UX Pro Max 驱动的现代前端 UI工作流
摘要: UI UX Pro Max 是一个面向AI编码助手的“设计知识库+决策引擎”,旨在解决工程师在UI/UX设计中的痛点,如风格割裂、配色混乱等问题。它内置57种UI风格、95套行业配色方案、98条UX规则,支持React、Vue、Flutter等9大技术栈。通过CLI工具快速集成到现有项目,AI能基于自然语言需求自动生成设计系统与代码,实现从“能跑”到“好看好用”的升级。例如,只需输入SaaS落地页需求,AI会推荐风格、配色、排版,并输出完整的React+Tailwind组件代码,显著提升设计效率与一
2026-01-05 06:00:00
3000
原创 Vibe Coding - 从 AGENTS.MD 到 MCP:给 Codex 搭一套可复用的工作规范和工具配置
摘要 本文探讨如何通过AGENTS.MD和MCP协议实现Codex在项目中的工程化应用。AGENTS.MD作为长效System Prompt,定义了AI角色的技术栈、设计原则和编码规范;MCP协议则规范了外部工具的安全调用方式。文章详细介绍了AGENTS.MD的设计要点,包括角色定位、核心价值观、语言规范、Java/Python/Bash编码准则,以及MCP工具使用的安全原则。这种组合方案使Codex能在不同项目和IDE间保持行为一致性,同时确保对外部资源的可控访问,为AI辅助开发提供了可复用的标准化工作流
2026-01-05 05:00:00
2851
原创 Vibe Coding - Claude Code 做 Java 项目 AI 结对编程最佳实践
为 Claude Code 等 AI 开发环境准备的 开发者工具包,提供可复用的 “skills(技能)” 和 “agents(代理)”,帮助自动化代码评审、测试、API 设计和 AI 集成等任务,当前重点支持 Java/Spring Boot,同时扩展到 TypeScript/Node.js、React、NestJS 等多语言生态
2026-01-03 21:38:04
1304
原创 Vibe Coding - Claude Code + Ralph Wiggum:自动化开发范式解析
摘要:Claude Code与Ralph Wiggum实现全自动编程工作流 Claude Code结合Ralph Wiggum插件实现了从对话式编程到全自动开发的转变。该方案通过以下机制工作: Claude Code作为智能开发环境,可直接操作代码库、运行测试和构建 Ralph插件实现受控循环,在Claude试图结束时通过Hook机制检查完成度 工作流遵循TDD原则,先设计测试再自动迭代开发 支持设置最大迭代次数防止无限循环 典型应用场景包括: 边界清晰的功能开发 可复现的Bug修复 明确范围的代码重构 风
2026-01-03 18:21:22
3351
3
原创 Flink - 01 Apache Flink 核心原理与架构深度解析
本文系统介绍了Apache Flink作为实时计算标准的核心优势与技术架构。Flink凭借流式优先设计、强大状态管理和Exactly-Once语义,成为实时计算领域首选。文章从设计哲学、架构模型、数据流处理、时间窗口、状态管理、容错机制等方面深入解析Flink核心技术,并通过Java实战示例展示其流处理能力。Flink适用于实时风控、实时数仓等场景,其核心价值在于将批流统一、提供低延迟高一致性的实时数据处理能力。学习路径建议从DataStream API入手,逐步掌握状态管理、时间窗口等高级特性,最终实现生
2026-01-03 15:15:00
687
原创 LLM - 面向工程实践的Agent Skills设计方法论
摘要: 在Agent开发中,过度加载上下文会导致性能、质量和成本问题。Anthropic提出的三层技能结构(元数据层、正文层、附属文件层)通过渐进式加载实现高效上下文管理。建议从"工具视角"转向"工作流视角"组织技能,确保每个技能聚焦单一能力。实践案例显示,将SKILL.md控制在200行内可提升4.8倍token利用率,显著降低延迟和溢出风险。落地时需审计现有技能,重构边界,并制定"200行规则"和冷启动测试规范,以优化Agent的稳定性和成本效
2026-01-03 09:15:00
2209
原创 LLM - TOON 与“面向模型”的新一代数据格式
摘要:JSON在LLM时代的局限性及TOON格式的优化方案 传统API时代广泛使用的JSON格式,在大语言模型(LLM)应用场景中暴露出显著问题。核心矛盾在于:LLM按Token处理数据,而JSON的结构冗余导致大量无效Token消耗。典型问题包括重复字段名、结构符号占用上下文预算,降低了模型的有效信息获取率。 新兴的TOON(令牌优化对象表示法)通过三项关键改进重塑数据格式:扁平化嵌套对象、消除重复结构、采用表格化排列。实测显示TOON相比JSON可节省约60%的Token,显著提升上下文窗口的信息密度。
2026-01-03 07:45:00
731
原创 LLM - Skills vs MCP:AI Agent 能力扩展的双螺旋
AI Agent技术栈中的Skills与MCP(Model Context Protocol)是两条关键能力路径:Skills负责固化方法论和流程(如代码审查、文案规范),通过结构化知识提升Agent的专业性;MCP则标准化外部系统连接(如GitHub、数据库),实现安全可控的工具调用。两者分别从内部心智和外部感知维度增强Agent能力,需协同使用——Skills确保执行质量,MCP扩展能力边界。这种组合使Agent从演示原型升级为可落地的生产系统。
2026-01-03 06:30:00
1752
原创 Vibe Coding - Codex最佳实践
本文对比了AI编程助手Codex、Claude Code和Cursor的差异,重点介绍了Codex的安装配置与高阶用法。Codex以CLI为核心,支持MCP协议,提供高度定制化能力,适合技术深度使用者;而Claude Code和Cursor更偏向开箱即用的集成方案。文章详细讲解了Codex的全局配置(config.toml、环境变量)、插件调优技巧,以及通过AGENTS.md实现角色化协作的方法,强调其系统性思维和工具链整合优势。相比其他工具,Codex在调试透明度、多工具协作和长期稳定性方面表
2026-01-02 16:28:46
1351
原创 Vibe Coding - 基于 OpenSkills 的 Claude Skills 体系化落地方案
摘要 本文介绍了如何通过开源项目OpenSkills实现跨工具复用Claude Skills的方法。Claude Skills是Anthropic提出的可复用任务组件机制,但官方仅支持Claude Code工具。OpenSkills通过三层结构打通技能层与工具层: 工具层:各类IDE/编辑器 技能描述层:AGENTS.md文件描述可用技能 技能实现层:实际Skills文件 使用流程包括:安装OpenSkills CLI工具、安装官方Skills、生成AGENTS.md文件。该方案支持项目级和全局级安装,并提
2026-01-02 10:15:00
1305
原创 LLM - Claude Skills:从通才 AI 到可复用的领域专家
摘要:Claude Skills 是可复用的专家能力单元,包含指令、知识和工具,解决现有AI应用中的Prompt复用难、工作流固化等问题。通过渐进式披露机制,Skill仅在必要时加载相关信息,避免上下文污染。开发者可通过六步流程创建Skill,包括定义元数据、设计专家工作流等。相比Sub-Agents和MCP,Skills更轻量,适合垂直任务场景,能实现模型在不同专家模式间的灵活切换,提升AI应用的工程化水平。(149字)
2026-01-02 07:15:00
1463
原创 Vibe Coding - AGENTS.md:下一代 AI 编码协作规范实战指南
AGENTS.md:AI开发者的专属项目指南 随着AI编码工具的普及,传统README已无法满足AI协作需求。AGENTS.md应运而生,作为AI专用的结构化项目说明书,提供可执行的开发指令。它包含三大核心内容: 开发环境配置(依赖安装、工具推荐) 测试流程(完整测试命令、质量保障要求) 协作规范(PR格式、提交检查) 目前已有6万+开源项目采用AGENTS.md,包括Apache Airflow等知名项目。创建方法简单:在项目根目录添加AGENTS.md文件,按技术栈本地化内容即可。主流AI工具如GitH
2026-01-02 04:45:00
1155
原创 LLM - Claude Code LSP(Language Server Protocol)语义级 IDE 助手
摘要: 大模型编程助手通过接入LSP(语言服务器协议)实现了从文本推理到语义推理的升级。传统方式下,模型仅能基于代码片段进行猜测,缺乏对项目结构、类型系统等工程上下文的感知。LSP作为IDE与语言服务器间的标准化接口,为模型提供了AST、诊断信息、符号导航等结构化数据。Claude Code等工具通过插件机制集成LSP后,可精准获取类型错误、跨文件引用等语义信息,显著减少试错回合。团队还可将编码规范转化为LSP诊断规则,使大模型在代码生成时自动遵循工程最佳实践,实现从个人工具到团队基础设施的进化。
2026-01-01 21:28:58
2687
1
原创 LLM - MCP 实战指南 : N×M → N+M 架构革命
摘要 Model Context Protocol(MCP)是一种开放标准协议,旨在解决大模型与外部工具、数据源集成困难的问题。MCP通过统一接口连接AI应用(如LLM、Agent)与各类服务,降低集成复杂度,促进开放生态。核心包括基于JSON-RPC的协议层、工具调用、资源访问和提示模板三大能力,支持多种传输方式。相比传统插件或手写集成,MCP将N×M的定制集成简化为N+M的标准协议,实现解耦复用。协议还包含安全控制和权限管理,适合企业环境。MCP有望成为AI时代的通用协议,推动从"手动挡&qu
2026-01-01 05:45:00
856
原创 LLM - 从 MCP 到 Skills:2025 年 AI Agent 的工程实践全景解析
摘要: AI Agent技术正从概念走向落地,通用Agent虽功能全面但成功率低,垂直场景Agent(如Coding Agent)表现更优。MCP协议解决了Agent与工具/数据的连接问题,而Skills层通过可复用的“技能包”提升了任务执行的稳定性。上下文工程通过精准控制信息输入(写入、选择、压缩、隔离)优化决策质量。未来Agent将演变为以LLM为核心、工具为外设的云端计算环境,需结合工程化方法实现高效落地。
2025-12-31 11:26:29
1316
原创 LLM - 单Agent和多Agent 架构的需求思考和实现路径
AI系统正从单体智能转向多智能体协作架构。早期Copilot主要完成简单任务,而现代Agent系统已能深入业务流程,承担专业角色。单体智能架构简单但面临职责过载等问题,多智能体通过角色拆分实现模块化协作,但需解决通信与调试难题。关键设计包括记忆体系(短期/长期、共享/私有)和护栏系统(行为边界、安全过滤)。建议项目初期采用单体验证核心价值,逐步拆分为多智能体并关注产业协议标准。产品设计应从"角色列表"出发,将观测性作为首要考量,避免过早锁定架构方案。
2025-12-31 05:00:00
916
原创 LLM - 生产级 AI Agent 设计手册:从感知、记忆到决策执行的全链路架构解析
本文提出构建生产级智能体AI系统的7层架构方法论,旨在解决企业场景下智能体系统可控、可观测、可演进的需求。7个核心层级包括:目标与价值对齐层(定义业务目标与约束)、感知与数据接入层(多源数据统一接入)、记忆与知识管理层(长期知识与短期记忆管理)、规划与决策层(任务分解与策略编排)、行动执行层(工具调用与系统集成)、反馈与优化层(多维度反馈采集与持续优化)、安全与监控层(风险控制与合规审计)。文章详细阐述了各层级的核心职责、关键问题及实践建议,强调通过分层解耦实现智能体从概念Demo到企业级系统的转变,并特别
2025-12-30 22:34:36
964
原创 LLM - MCP Server 标准化工具交互全指南
摘要: Model Context Protocol (MCP) 是 AI Agent 工具交互的标准协议,由 Anthropic 于 2024 年推出,旨在解决 Agent 与外部资源集成的碎片化问题。MCP 通过标准化工具发现、调用和响应流程,提升扩展性与安全性,支持多种传输方式(如 HTTP、SSE)。其核心优势包括模块化、动态工具发现和语义描述(如 inputSchema)。落地实践中,MCP Server 需解决安全性(认证授权)、动态编排和存量服务转化等挑战,通过注册中心与网关实现工具生命周期管
2025-12-29 23:04:31
881
原创 LLM - 行业 AI Agent 实战指南:系统化落地的四层架构与最佳实践
2025年被视为"AI Agent元年",垂直行业Agent面临的核心挑战是如何将行业专有知识(Know How)系统化。行业Know How包含术语体系、规则约束等五大模块,但80%的行业Agent失败源于知识未结构化。文章提出"知识-数据-行为-模型"四层架构解决方案:知识层通过结构化术语与规则库实现隐性知识显性化;数据层建立测试集先行机制;行为层定义Agent执行边界;模型层采用RAG优先策略。最后以Spring AI框架为例,展示了企业级Java Agent的
2025-12-29 21:50:21
1100
原创 AIGC - 使用 Nano Banana Pro 生成卡通信息图的完整指南
Google推出的Nano Banana Pro是一款基于Gemini 3 Pro架构的AI图像生成模型,擅长将复杂文本转化为手绘风格卡通信息图。该模型支持16:9横屏4K分辨率,能融合14个元素并保持角色一致性,特别优化了中文渲染能力。文章提供了详细的提示词模板,包含风格、内容和限制三部分规则,确保生成纯手绘风格的简明信息图。通过Gemini官网、API或国内镜像即可访问,并附有Python调用示例。实战案例展示了如何将技术文章转化为可视化内容,显著提升信息传达效率。进阶案例还演示了算法流程图的生成能力。
2025-12-28 22:54:42
984
原创 LLM - AgentScope + Mem0 搭建实战可用的 AI Agent 记忆系统
本文探讨了大模型记忆系统的工程实现,分为短期记忆和长期记忆两个维度。短期记忆通过上下文缩减、卸载和隔离等策略管理会话内信息,如AgentScope的AutoContextMemory提供6级压缩策略。长期记忆则采用Mem0架构,通过Record(提取事实并向量化存储)和Retrieve(检索并重排)流程实现跨会话记忆。两者协同工作,既保证单次对话连贯性,又能实现个性化用户体验。当前技术趋势包括记忆即服务(MaaS)和更精细的分层记忆管理。
2025-12-27 22:07:34
1912
1
原创 LLM - 用 SpecKit 和 AICode 改造遗留系统 完整实践指南
摘要:SpecKit与AICode结合为存量Java Web系统提供规范驱动开发流程,通过五步标准化流程(对齐原则、需求规格化、技术设计、任务分解、自动实现)解决AI编码带来的风格分裂、测试缺失等问题。以Spring Boot项目为例,从定义项目宪法到代码实现,建立可复用、可协作的开发规范,提升团队协作效率与代码可维护性。
2025-12-24 22:47:16
1325
原创 LLM - 如何构建AI Agent_ 从工作流到Agentic模式的系统实践指南
AI智能体应用设计指南 随着大语言模型发展为能自主规划、调用工具的AI智能体,如何合理应用成为关键。本文提出实用建议: 适用性判断:固定流程用工作流更高效;复杂推理场景才需智能体。需权衡延迟与成本收益。 工作流三模式: 提示链:有序拆解任务 路由:智能分发子任务 并行化:同时处理独立任务 智能体四模式: 反思:自我审查迭代 工具使用:连接外部系统 规划:中央协调多步骤 多智能体:角色分工协作 实践建议:从简单版本开始,混合使用模式,注重日志监控和异常处理。先用工作流打基础,再在关键环节引入智能体,通过指标持
2025-12-24 22:34:10
1057
原创 AIGC - KnowFlow v2.3.0 的多模态视频解析能力与工程化实践
2025年企业级RAG系统正从纯文本向多模态知识库演进。KnowFlow v2.3.0实现了视频作为可检索的一等公民数据源,通过五阶段流水线(ASR转写、关键帧提取、智能切片、VLM描述、Chunk组装)将视频转化为结构化知识。该系统采用Whisper ASR作为主模态,配合关键帧压缩和智能切片策略,使视频内容可精准检索定位。此次升级还优化了UI权限体系,降低部署成本,为企业构建可落地的多模态知识基础设施提供了完整解决方案。
2025-12-23 06:27:16
1536
Redis 8.0.3 是高性能的 Key-Value 缓存数据库,本版本为社区适配的 Windows 平台编译版本,适用于开发环境或测试用途
2025-07-12
版本 8.0.3 国产4种架构 x86arm64loongarchmips
2025-07-11
「Tomcat源码剖析」.pdf
2020-06-01
中标龙芯-MIPS- NFS rpm包
2020-11-24
X86-NFS rpm包
2020-11-24
apache-tomcat-8.5.50-src.zip
2020-06-02
mybatisSource.zip
2020-06-14
Spring4CachingAnnotationsExample
2017-10-04
Jest-5.3.4.zip
2020-01-19
Java反编译工具
2015-06-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅