
官网地址
概述
如果更注重数据隐私、希望离线使用,或者想更深入地定制和控制模型,那么本地部署 DeepSeek 模型是一个非常好的选择。
Ollama 介绍
Ollama 是一款专为大型语言模型(LLM)设计的开源本地化部署工具,其名称源自 “Operate Large Language Models Anywhere, Anytime”(随时随地运行大模型)的核心理念。它通过简洁的命令行接口和高效的资源管理能力,让开发者在个人电脑、服务器甚至边缘设备上轻松运行如 DeepSeek、Llama、Mistral 等主流大模型,同时支持高度定制化配置。
安装 Ollama
安装 Ollama: 访问 Ollama 官方网站 (https://ollama.com/),根据你的操作系统 (macOS, Linux, Windows) 下载并安装 Ollama。 安装过程非常简单,通常只需下载安装包并运行即可。
拉取 DeepSeek 模型
访问: https://ollama.com/library/deepseek-r1:1.5b
拉取 DeepSeek 模型 (使用 Ollama): 打开终端 (macOS/Linux) 或 PowerShell (Windows),运行以下命令来从 Ollama 模型库中拉取 DeepSeek 模型:
Ollama 将会自动下载 DeepSeek 模型文件到本地计算机。 下载时间取决于网络速度和模型大小。 请注意,DeepSeek 模型文件可能比较大,请确保硬盘空间足够。
终端交互
Ollama 将会启动 DeepSeek 模型,并在终端中进入交互式对话模式。 可以直接在终端中输入你的问题或指令,DeepSeek 模型将会生成回复。
本地 Ollama 部署优缺点
优势
- 数据隐私: 所有数据处理都在本地进行,数据不会离开你的计算机,隐私性更好。
- 离线使用: 无需网络连接。
- 成本可控: 免费。
- 定制化: 可以更灵活地配置模型参数、Prompt 模板,甚至在一定程度上修改模型。
- 稳定性: 不受云端服务器负载的影响,稳定性更高。
局限性
- 硬件资源要求: 需要一定的本地计算机硬件资源 (CPU, GPU, RAM, 存储空间) 来运行模型,性能受限于硬件配置。
- 初始配置: 需要一定的技术知识来安装和配置 Ollama。
- 模型更新: 需要手动更新模型文件。
- 可能不如云端 API 易用: 对于非技术用户,可能不如云端 API 方便易用