分布式缓存:缓存设计三大核心思想

在这里插入图片描述


缓存全景图

在这里插入图片描述


一、缓存的定义

  • 狭义缓存:起源于硬件层面,指 CPU 内部或与 CPU 紧密耦合的快速存储——静态 RAM(SRAM),用于加速对主存(DRAM)的数据交换。

  • 广义缓存:凡是能提升数据访问速度的软硬件层次均可称作缓存,如操作系统的页缓存、应用层的 Redis、Memcached 等中间件。

存在意义:当原始数据获取代价过高时,开辟高速缓冲区存储热点数据,借助“近水楼台”效应,实现更快的访问。


二、缓存的基本思想

缓存构建围绕三大核心原则展开:

  1. 时间局限性原理

    • 热点数据“读一次、用多次”。
    • 典型场景:一条热门微博,初次加载后会被大量用户继续阅读。
  2. 空间换时间

    • 用高性能存储(内存、SSD Cache 等)为热点数据提供专属访问通道。
  3. 性能—成本 Tradeoff

    • 高性能存储成本居高不下;容量与延迟、吞吐之间需权衡。
    • 例如:同等预算下,SSD 容量可比内存大 10~30 倍,但读写延迟却高 50~100 倍。
      在这里插入图片描述

三、缓存的优势

  1. 提升访问性能

    • 毫秒级甚至微秒级读取,显著优于传统数据库。
  2. 降低网络拥堵

    • 缓存中多为中间结果或聚合后的小体量数据,减少远程查询流量。
  3. 减轻后端负载

    • 缓解数据库和计算服务压力,缩短端到端处理链路。
  4. 增强可扩展性

    • 缓存层可横向扩容,应对突发及持续高并发场景。

四、缓存的代价

  1. 系统复杂度上升

    • 设计、部署与运维都需额外考虑缓存层的拓扑、路由、监控与故障恢复。
  2. 硬件/运维成本提高

    • 内存或高速存储资源单价高,且需维持多副本与高可用。
  3. 数据一致性挑战

    • 多副本/多层缓存带来脏读、过期、丢失更新等风险;
    • 缓存与数据库双写或回源逻辑设计不当,易造成“读脏”、“写不全”等问题。

五、实例对比:数据库 vs. 缓存

指标MySQL 单实例Memcached/Redis
读写 QPS3 000–6 00010⁵–10⁶
单次访问延迟10–100 ms< 1 ms
并发扩展能力纵向扩展受限横向扩展灵活,分片/集群

若一个请求需聚合 20 条记录,单依赖 DB 访问耗时可达数百毫秒;使用缓存后,即便是百条并发访问,也可在毫秒级内完成。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小工匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值