大模型开发 - 12 Prompt:Spring AI 中的提示(Prompt)系统详解_从基础概念到高级工程实践

在这里插入图片描述

Pre

大模型开发 - 01 Spring AI 核心特性一览

大模型开发 - 02 Spring AI Concepts

大模型开发 - 03 QuickStart_借助DeepSeekChatModel实现Spring AI 集成 DeepSeek

大模型开发 - 04 QuickStart_DeepSeek 模型调用流程源码解析:从 Prompt 到远程请求

大模型开发 - 05 QuickStart_接入阿里百炼平台:Spring AI Alibaba 与 DashScope SDK

大模型开发 - 06 QuickStart_本地大模型私有化部署实战:Ollama + Spring AI 全栈指南

大模型开发 - 07 ChatClient:构建统一、优雅的大模型交互接口

大模型开发 - 08 ChatClient:构建智能对话应用的流畅 API

大模型开发 - 09 ChatClient:基于 Spring AI 的多平台多模型动态切换实战

大模型开发 - 10 ChatClient:Advisors API 构建可插拔、可组合的智能对话增强体系

大模型开发 - 11 ChatClient:Advisor 机制详解:拦截、增强与自定义 AI 对话流程


概述

在构建基于大语言模型(LLM)的应用程序时,提示(Prompt) 是连接开发者意图与 AI 模型能力的核心桥梁。Spring AI 作为 Spring 生态系统中面向生成式 AI 的新成员,提供了一套结构化、类型安全且高度可扩展的提示管理机制。本文将深入剖析 Spring AI 中提示系统的设计理念、核心组件、使用方式以及提示工程的最佳实践,帮助开发者全面掌握这一关键能力。


一、提示(Prompt)的本质与 Spring AI 的类比

在 Spring AI 中,提示(Prompt) 是引导 AI 模型生成特定输出的输入指令。其设计和措辞对模型响应的质量、准确性与风格具有决定性影响。

Spring AI 将提示处理类比于 Spring MVC 中的 “视图(View)” 层:开发者编写包含占位符的模板文本(如 "Tell me a {adjective} joke about {topic}"),运行时根据用户请求或业务逻辑动态填充这些占位符,最终生成完整的提示字符串。这种模式类似于 SQL 语句中的参数化查询(如 SELECT * FROM users WHERE name = ?),通过占位符实现动态内容注入,避免硬编码并提升灵活性。

随着 Spring AI 的演进,其抽象层次也在不断提升:

  • 底层基础类(如 ChatModel 类似于 JDBC —— 提供最原始、最直接的模型调用能力。
  • 高层封装类(如 ChatClient 则类似于 JdbcClient —— 在 ChatModel 之上构建,通过 Advisor(顾问) 机制支持上下文记忆、检索增强(RAG)、工具调用(Tool Calling)和智能体(Agentic)行为等高级功能。

这种分层设计使得开发者既能进行细粒度控制,也能快速构建复杂 AI 应用。


二、核心 API 概览:PromptMessage

1. Prompt 类:结构化提示的容器

在 Spring AI 中,与 AI 模型交互的标准方式是调用 ChatModel.call(Prompt) 方法,该方法接收一个 Prompt 实例并返回 ChatResponse

Prompt 类的核心作用是封装一系列有序的 Message 对象以及可选的 ChatOptions(模型调用参数)。其简化定义如下:

public class Prompt implements ModelRequest<List<Message>> {
    private final List<Message> messages;
    private ChatOptions chatOptions;
}

关键点:现代 AI 模型(如 OpenAI 的 GPT 系列)不再将提示视为单一字符串,而是由多条具有不同角色的消息组成的对话历史Prompt 正是这一理念的体现。

2. Message 接口:消息的抽象

每条 Message 代表对话中的一个语义单元,包含:

  • 文本内容(getContent()
  • 元数据(getMetadata()
  • 消息类型(getMessageType()

其接口定义如下:

public interface Content {
    String getContent();
    Map<String, Object> getMetadata();
}

public interface Message extends Content {
    MessageType getMessageType();
}

对于多模态模型(支持图像、音频等),Message 还可实现 MediaContent 接口,提供媒体内容列表:

public interface MediaContent extends Content {
    Collection<Media> getMedia();
}

在这里插入图片描述


三、消息角色(Roles):对话的语义结构

Spring AI 通过 MessageType 枚举定义了四种核心消息角色,这直接映射了主流 LLM(如 OpenAI、Anthropic)的对话协议:

public enum MessageType {
    USER("user"),
    ASSISTANT("assistant"),
    SYSTEM("system"),
    TOOL("tool");
}

1. 系统角色(SYSTEM)

  • 作用:为 AI 设定行为准则、身份、风格或约束条件。
  • 类比:给 AI 的“操作手册”或“角色设定卡”。
  • 示例
    你是一个专业的历史学家,回答需严谨、引用可靠史料,避免虚构。
    

2. 用户角色(USER)

  • 作用:代表用户的实际输入——问题、指令或陈述。
  • 核心:这是触发 AI 响应的直接原因。
  • 示例
    请简述法国大革命的主要原因。
    

3. 助手角色(ASSISTANT)

  • 作用:AI 生成的回复。不仅包含答案,还可包含工具调用请求(Function/Tool Call)
  • 重要性:在多轮对话中,历史 ASSISTANT 消息是维持上下文连贯性的关键。
  • 示例(含工具调用)
    {
      "role": "assistant",
      "content": null,
      "tool_calls": [{
        "function": { "name": "get_weather", "arguments": "{ \"city\": \"Paris\" }" }
      }]
    }
    

4. 工具/函数角色(TOOL)

  • 作用:向 AI 返回工具调用的结果,供其生成最终回答。
  • 流程ASSISTANT 请求调用工具 → 应用执行工具 → 将结果以 TOOL 消息形式回传给模型。
  • 示例
    {
      "role": "tool",
      "content": "{ \"temperature\": 22, \"unit\": \"Celsius\" }",
      "tool_call_id": "call_abc123"
    }
    

设计优势:这种角色分离机制使 Spring AI 能天然支持函数调用(Function Calling)ReAct(Reason + Act) 等高级 AI 交互模式。


四、PromptTemplate:动态提示生成的核心

1. 基本概念

PromptTemplate 是 Spring AI 中用于创建结构化、可参数化提示的核心类。它基于模板引擎,将静态模板与动态数据结合,生成最终的 PromptMessage

默认使用 StringTemplate 引擎(由 Terence Parr 开发),占位符语法为 {variable},但支持自定义分隔符。

2. 核心接口与能力

PromptTemplate 实现了三个关键接口,覆盖不同层次的提示构建需求:

(1) PromptTemplateStringActions:字符串级渲染

public interface PromptTemplateStringActions {
    String render(); // 无参数渲染
    String render(Map<String, Object> model); // 带参数渲染
}

(2) PromptTemplateMessageActions:消息对象创建

public interface PromptTemplateMessageActions {
    Message createMessage(); // 静态消息
    Message createMessage(List<Media> mediaList); // 多模态消息
    Message createMessage(Map<String, Object> model); // 动态消息
}

(3) PromptTemplateActions:完整 Prompt 构建

public interface PromptTemplateActions extends PromptTemplateStringActions {
    Prompt create(); // 静态 Prompt
    Prompt create(ChatOptions modelOptions); // 带选项的 Prompt
    Prompt create(Map<String, Object> model); // 动态 Prompt
    Prompt create(Map<String, Object> model, ChatOptions modelOptions); // 动态+选项
}

3. 使用示例

示例 1:基础动态提示

PromptTemplate promptTemplate = new PromptTemplate("Tell me a {adjective} joke about {topic}");
Prompt prompt = promptTemplate.create(Map.of("adjective", "funny", "topic", "AI"));
ChatResponse response = chatModel.call(prompt);

示例 2:结合系统与用户消息

// 用户消息
String userText = "Tell me about three famous pirates...";
Message userMessage = new UserMessage(userText);

// 系统消息(带模板)
String systemText = "You are a helpful AI assistant named {name}. Reply in the style of a {voice}.";
SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemText);
Message systemMessage = systemPromptTemplate.createMessage(Map.of("name", "Sparrow", "voice", "pirate"));

// 构建完整 Prompt
Prompt prompt = new Prompt(List.of(systemMessage, userMessage));
List<Generation> results = chatModel.call(prompt).getResults();

注意:消息顺序很重要!通常 SYSTEM 消息在前,USER 在后。

4. 自定义模板渲染器

为避免与 JSON 中的 {} 冲突,可自定义分隔符:

PromptTemplate promptTemplate = PromptTemplate.builder()
    .renderer(StTemplateRenderer.builder()
        .startDelimiterToken('<')
        .endDelimiterToken('>')
        .build())
    .template("Tell me 5 movies by <composer>.")
    .build();

String prompt = promptTemplate.render(Map.of("composer", "John Williams"));
// 输出: "Tell me 5 movies by John Williams."

5. 从资源文件加载模板

Spring AI 支持 org.springframework.core.io.Resource,可将提示模板存于文件:

@Value("classpath:/prompts/system-message.st")
private Resource systemResource;

// 直接使用 Resource 构建模板
SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemResource);

这有利于提示模板的外部化管理版本控制


五、提示工程(Prompt Engineering):提升 AI 输出质量的艺术

提示工程是生成式 AI 应用开发的核心技能。高质量的提示能显著提升模型输出的准确性、相关性和安全性。

1. 有效提示的关键组件

构建优秀提示应包含以下要素:

组件说明示例
指令(Instructions)清晰、具体的任务描述“用三句话总结…”
外部上下文(External Context)背景信息或约束“假设用户是高中生…”
用户输入(User Input)核心问题或请求“解释量子纠缠”
输出指示器(Output Indicator)期望的格式或结构“以 JSON 格式返回,包含 title 和 summary 字段”

警告:模型可能不严格遵守格式要求(如在 JSON 前加说明文字),需结合后处理或 Schema 约束。

2. 高级提示技术

技术描述Spring AI 支持
Few-shot Learning提供示例引导模型通过多条 USER/ASSISTANT 消息实现
Chain-of-Thought (CoT)要求模型“逐步思考”在系统消息中加入“Let’s think step by step”
ReAct结合推理与行动(工具调用)通过 ASSISTANTTOOLASSISTANT 流程实现
检索增强生成(RAG)注入外部知识通过 ChatClient + Advisor 实现

3. 社区与研究洞察

  • “Take a deep breath and work on this problem step by step” 被证明能显著提升复杂问题解决能力。
  • 微软等公司已提出结构化提示框架,指导开发者系统化设计提示。

六、Tokens:AI 模型的“计量单位”

1. 什么是 Token?

Token 是 AI 模型处理文本的基本单位。一个 token ≈ 0.75 个英文单词。例如:

  • Shakespeare 全集(90万词)≈ 120万 tokens
  • “unbelievable” 可能被拆为 ["un", "believ", "able"] 三个 tokens

2. Token 的实际影响

方面说明
计费输入 + 输出 tokens 总数决定成本。精简提示可降本。
上下文窗口(Context Window)模型有最大 token 限制(如 GPT-3: 4K, Claude 2: 100K)。超限内容会被截断。
性能更少 tokens 通常意味着更快响应。

3. 最佳实践

  • 只传递必要信息:询问《哈姆雷特》时,无需包含莎翁其他作品。
  • 监控响应元数据ChatResponse 包含使用的 token 数,可用于成本分析。

七、总结

Spring AI 的提示系统通过 PromptMessageMessageTypePromptTemplate 等组件,为开发者提供了:

  • 类型安全的提示构建方式
  • 角色清晰的对话结构支持
  • 高度灵活的模板渲染机制
  • 无缝集成 Spring 生态(如 @Value 加载资源)

随着 ChatClientAdvisor 等高层抽象的完善,Spring AI 将进一步简化 RAG、Agent、Tool Calling 等复杂场景的实现。

提示工程不是魔法,而是科学与艺术的结合。掌握 Spring AI 的提示系统,意味着你不仅是在调用 AI,更是在精心设计人与智能体的对话协议。持续学习社区最佳实践、实验不同提示策略、监控 token 使用,将是构建高效、可靠 AI 应用的关键。

延伸资源

在这里插入图片描述

<think>我们正在讨论SpringAI中的多模型控制器(MCP)的使用。根据用户的问题,他想要一个使用指南和操作实战教程。我们将结合之前的引用内容,特别是引用[1]中提到的MCPStarter的依赖配置,以及引用[2]中关于环境准备的信息。首先,我们需要明确MCP(Multi-modelController)的作用:它允许开发者在同一个应用中轻松切换和调用不同的AI模型(如DeepSeek、OpenAI等),而无需修改核心业务代码。接下来,我们将按照以下步骤进行:1.环境准备2.添加依赖3.配置MCP和模型API密钥4.编写代码示例5.运行和测试###环境准备根据引用[2],我们需要:-Java17或更高(推荐Java21)-SpringBoot3.2.x或更高-DeepSeekAPI密钥(或其他支持的模型API密钥)###添加依赖在项目的`pom.xml`中添加MCPStarter依赖(如引用[1]所示):```xml<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-mcp-spring-boot-starter</artifactId><version>1.0.0</version></dependency>```###配置MCP和模型API密钥在`application.yml`(或`application.properties`)中配置MCP和模型。这里以DeepSeek为例:```yamlspring:ai:mcp:enabled:trueproviders:deepseek:api-key:YOUR_DEEPSEEK_API_KEY#其他模型特定配置(可选)#全局配置(可选)```###编写代码示例使用MCP的核心是注入`AiClient`,然后通过它来调用模型。MCP会根据配置自动路由到指定的模型。创建一个简单的控制器:```javaimportorg.springframework.ai.client.AiClient;importorg.springframework.ai.client.AiResponse;importorg.springframework.ai.prompt.Prompt;importorg.springframework.web.bind.annotation.GetMapping;importorg.springframework.web.bind.annotation.RequestParam;importorg.springframework.web.bind.annotation.RestController;@RestControllerpublicclassAiController{privatefinalAiClientaiClient;publicAiController(AiClientaiClient){this.aiClient=aiClient;}@GetMapping("/ask")publicStringask(@RequestParamStringquestion){Promptprompt=newPrompt(question);AiResponseresponse=aiClient.generate(prompt);returnresponse.getGeneration().getText();}}```###运行和测试启动SpringBoot应用,访问`http://localhost:8080/ask?question=你的问题`,即可看到模型返回的回答。###多模型切换如果想在同一个应用中使用多个模型,可以在配置中指定多个提供者,并在代码中通过`AiClient`的特定方法(如指定模型名称)来调用。例如:```yamlspring:ai:mcp:providers:deepseek:api-key:YOUR_DEEPSEEK_API_KEYopenai:api-key:YOUR_OPENAI_API_KEY```然后在代码中,可以通过设置提示的选项来指定模型:```javaPromptprompt=newPrompt(question,Map.of("model","deepseek"));//或"openai"```###注意事项-确保API密钥正确,并且网络可以访问模型服务。-MCPStarter会自动配置`AiClient`,因此无需手动创建。-详细配置和高级用法可参考SpringAI官方文档。§§相关问题§§1.如何在SpringAI中同时配置多个AI模型提供者?2.如何通过MCP实现模型调用的负载均衡或故障转移?3.在使用DeepSeek模型时,有哪些特殊的配置参数需要注意?</think>### Spring AI 多模型控制器(MCP)使用指南与实战 #### 一、MCP 核心概念 多模型控制器(MCP)是 Spring AI 的核心组件,它提供统一的接口管理多个 AI 模型(如 DeepSeek、OpenAI 等),支持动态切换模型、请求路由和负载均衡。其核心优势在于**解耦业务代码与模型实现**,只需通过标准 API 调用,无需关注底层模型差异[^1]。 #### 二、环境配置(实战步骤) ##### 1. 添加 MCP 依赖 ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-mcp-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency> ``` ##### 2. 配置模型密钥 在 `application.yml` 中配置 DeepSeek 和其他模型: ```yaml spring: ai: mcp: providers: deepseek: api-key: YOUR_DEEPSEEK_API_KEY # 官网申请 endpoint: https://api.deepseek.com/v1 openai: api-key: sk-xxxxxxxxxxxxxxxx default-provider: deepseek # 设置默认模型 ``` #### 三、代码实战 ##### 场景1:基础对话服务 ```java @RestController public class ChatController { @Autowired private AiClient aiClient; // MCP 自动注入的统一客户端 @PostMapping("/chat") public String generate(@RequestBody String prompt) { // 调用当前激活的模型(默认DeepSeek) return aiClient.generate(prompt); } } ``` **测试请求**: ```bash curl -X POST http://localhost:8080/chat -d "用Java实现快速排序" ``` ##### 场景2:动态切换模型 ```java @Service public class ModelService { @Autowired private ModelRouter modelRouter; public String switchModel(String modelId, String prompt) { // 动态切换到指定模型 AiResponse response = modelRouter.route(modelId) .generate(new Prompt(prompt)); return response.getGeneration().getContent(); } } ``` **调用示例**: ```java switchModel("openai", "解释量子计算"); // 实时切换至OpenAI ``` ##### 场景3:多模型负载均衡 ```yaml # 在配置中启用负载均衡 spring: ai: mcp: routing-strategy: load_balance # 轮询策略 ``` ```java // 自动均衡请求到不同模型 aiClient.generate("多模型负载测试"); ``` #### 四、高级功能 1. **请求拦截器** 自定义预处理逻辑: ```java @Bean public AiClientInterceptor loggingInterceptor() { return (prompt, attributes) -> { System.out.println("发送请求: " + prompt.getContents()); return prompt; }; } ``` 2. **模型性能监控** ```java @Autowired private ModelMetrics modelMetrics; public void printMetrics() { modelMetrics.getProviderStats("deepseek") .forEach((k, v) -> System.out.println(k + ": " + v)); } ``` 输出示例:`response_time_ms: 420 | tokens_used: 1050` #### 五、调试技巧 1. **查看激活模型** ```bash curl http://localhost:8080/actuator/aimodels ``` 2. **强制指定模型** 请求头添加:`X-AI-Provider: openai` > **最佳实践**:生产环境中建议配置**模型降级策略**,当主模型不可用时自动切换备用模型[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小工匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值