第11篇:多模态论文MARS: Harmonizing Multimodal Convergence via Adaptive Rank Search(自适应学习率)

第一部分:基本信息

一篇投稿至 ICLR 2026 的会议论文(处于双盲评审阶段),核心聚焦多模态大语言模型(MLLM)微调中的模态收敛协调问题,提出了名为 MARS 的自适应秩搜索方法。

第二部分:解决的问题

利用低秩适配(LoRA)等参数高效方法对多模态大语言模型(MLLMs)进行微调,是任务适配的关键环节。然而,多模态大模型(MLLM)用 LoRA 做微调时,各个模块(视觉编码器 ME 和 LLM)收敛速度不一致,导致整体性能不佳,而且调参非常费时

如果 ME 适应太慢,会成为瓶颈;如果 LLM 适应太慢,会导致训练振荡和不稳定。

  • (a)模态编码器(ME)适配不足:ME 和投影层(Proj)的收敛速度慢(梯度小、扰动弱),而 LLM 主干网络收敛快。
  • (b)性能瓶颈:对应(a)的情况,ME 适配不足会导致性能陷入瓶颈(图中 “ME Slow
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值