活动安排问题
Time Limit(Common/Java):3000MS/9000MS Memory Limit:65536KByte
Total Submit:63 Accepted:19
http://acm.njupt.edu.cn/acmhome/solutionCode.do?id=4af76cc2396b55b3013a2bf38fec0732 题目网址
Total Submit:63 Accepted:19
Description
设有n个活动的集合E={1,2,……,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si<fi。如果选择了活动i,则它在时间区间[si,fi]内占用资源。若区间[si,fi]与区间[sj,fj]不相交,则称活动i与活动j是相容的。也就是说,当si>=fj或者sj>=fi时,活动i与活动j相容。活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合。
但在现实生活中,不同的活动所带来的价值和意义是不一样的,所以我们可以为每个活动附上一个权值,现在的问题就是要在所给的活动集合中选出权值和最大的相容活动子集合。Input
第一行输入一个正整数n(1<=n<=100000)为活动集合的大小 ,余下n行每行输入三个非负整数s,f,v分别代表活动的起始时间,结束时间和权值,(0<=s<f<=10000000 , 0<=v<=10000)。
Output
一行,权值和最大的相容活动子集合的权值和。
Sample Input
3
0 5 50
6 9 49
3 7 100
Sample Output
100
Hint
Source
计算机学院/软件学院第二届ACM程序设计大赛
http://blog.csdn.net/yangshuolll/article/details/8043242 二分的学习详见此blog
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<numeric>
#include<stdlib.h>
#include<math.h>
int Max(int a,int b)
{
if(a>b)return a;
else return b;
}
using namespace std;
struct node{
int s,f,v;
}a[100010];
int dp[100010];
int cmp(node a,node b)
{
return a.f<b.f ;
}
int main()
{
int n,i;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d %d %d",&a[i].s,&a[i].f,&a[i].v);
sort(a+1,a+n+1,cmp); //先对结束的时间进行排序
a[0].s=a[0].f=a[0].v=0; //这里可以不用对其进行赋值 因为初始化的时候 他们已经归0了
for(i=1;i<=n;i++)
{
int min=0,max=i,k=a[i].s,middle=0;
while(max>min+1)
{
middle=(max+min)/2;
if(a[middle].f>=k) max=middle;
else min=middle;
}
k=max-1;
dp[i]=Max(dp[i-1],dp[k]+a[i].v ); // dp[k]+a[i].v 是找的是本活动的开始时间是在哪个节目结束时间之前 加上它的总值即可
}
printf("%d\n",dp[n]);
}
自己有敲了第二遍程序 深入学习了 二分后 在敲一遍这个程序
这个程序更完善些
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef struct {
int s,f,v;
} action;
action a[110000]; //初始化的时候 action 结构体里面的内容已经全部赋值为0了。
int dp[110000];
int max(int a,int b)
{
if(a>b)return a;
else return b;
}
int cmp(action a,action b)
{
return a.f<b.f;
}
int main()
{
int n,i;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d %d %d",&a[i].s,&a[i].f,&a[i].v);
sort(a+1,a+n+1,cmp);
for(i=1;i<=n;i++) //确定好了边界
{
int l=0,r=i,middle,k=a[i].s,;
while( ( middle=(l+r)/2 ) && l+1<r ) //这是从i-1开始寻找 得到 i前面的演唱会的结束时间小于第i场演唱会的开始时间
{
if( a[middle].f>k ) r=middle;
else l=middle;
}
k=middle;
dp[i]=max(dp[i-1],dp[k]+a[i].v ); //这里暗含着a[0].s=0 a[0].f=0 a[0].v=0;
}
printf("%d\n",dp[n]);
}