假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
解题思路:
动态规划思想。
自己的求解过程,感觉有点儿像数学中的“归纳法”,先把小规模的解列出来,再归纳出函数。
知道问题规模小的时候的解(函数f(n),特殊),如n=1、2,然后推理得f(n)=f(n-1)+f(n-2)
Python:
一、
超时
class Solution:
def climbStairs(self, n: int) -> int:
if n==1:
return 1
if n == 2:
return 2
num = self.climbStairs(n-1) + self.climbStairs(n-2)
return num
二、
class Solution:
def climbStairs(self, n: int) -> int:
if n==1:
return 1
if n == 2:
return 2
n1 = 1
n2 = 2
for i in range(3,n+1):
num = n1 + n2
n1 = n2
n2 = num
return num
C++
方法一:
暴力递归,列举出可能的情况。
时间复杂度O(2n),空间复杂度O(n).
class Solution {
public:
int climbStairs(int n) {
return climb_Stairs(0, n);
}
int climb_Stairs(int i, int n){
if(i>n) return 0;
if(i==n) return 1;
return climb_Stairs(i+1, n) + climb_Stairs(i+2, n);
}
};
方法二
记忆递归
时间复杂度O(n),空间复杂度O(n)
暴力递归中有许多重叠子问题,将计算过的子问题的解保存起来,可以减小时间复杂度。
class Solution {
public:
int climbStairs(int n) {
int mem[n+1];
memset(mem, 0, sizeof(mem)); //将数组初始化为0
return climb_Stairs(0, n, mem);
}
int climb_Stairs(int i, int n, int mem[]){
if(i>n) return 0;
if(i==n) return 1;
if(mem[i]>0) return mem[i];
mem[i] = climb_Stairs(i+1, n, mem) + climb_Stairs(i+2, n, mem);
return mem[i];
}
};
方法三
动态规划/斐波那契数:
第i阶的解可以由子问题:
(1) 第i-1阶的解,向后爬一阶;
(2) 第i-2阶的解,向后爬两阶;
的和得到。
时间复杂度O(n),空间复杂度O(1).
class Solution {
public:
int climbStairs(int n) {
if(n==1) return 1;
if(n==2) return 2;
int a = 1, b =2; //保存n为1、2的值
int i = 3; //n从3开始
int count = 0; //最终的返回值
while(i <= n ){
count = a + b;
a = b;
b = count;
++i;
}
return count;
}
};