情感分析
文章平均质量分 56
Shawn-Yang
现如今是一名学生,软件工程专业
展开
-
图片情感分析(2):图像情感分析模型
图像情感分析模型是基于卷积神经网络建立的,卷积神经网络的构建用了keras库,具体代码实现以及代码运行在下一篇贴出。模型包括3个卷积层、2个池化层、4个激活函数层、2个Dropout层、2个全连接层、1个Flatten层和最终分类层。原创 2017-05-26 10:28:24 · 17699 阅读 · 5 评论 -
图像情感分析(3):基于卷积神经网络的图像情感分析模型Python实现
图像情感分析代码:https://github.com/Yang-Shawn/image-sentiment-analysis图像数据集有两个:第一个为500张图片,积极消极各250张,已上传至CSDN资源里:http://download.csdn.net/detail/yangss123/9854847第二个为Flickr网站flower类别的一个数据集,该数据集有1.7G,包含积原创 2017-05-28 13:20:52 · 9549 阅读 · 76 评论 -
图片情感分析(1):图像数据预处理
图片情感分析,重点是颜色特征的提取,将每一个像素点的颜色特征转换成一个值,最终效果是把一个图片转换成一个二维矩阵,矩阵中每一个值都代表该像素点的颜色特征。概括来说就是将每个像素点的RGB值转换为HSV,然后对HSV三个值进行加权求和,得出一个值来表示颜色特征,RGB值转换为HSV有标准公式,对HSV三个值进行加权求和时权值的选择参考自一篇对服装图像进行分类的论文。具体过程如下:原创 2017-05-22 14:40:42 · 5828 阅读 · 3 评论