【Python】pandas.cut()函数的用法

本文详细介绍了pandas.cut()函数在数据分析和机器学习中的应用,如何将连续数值变量转换为离散类别,以及其基本用法、参数解释和示例操作,包括整数分箱、自定义边界、标签设置和返回分箱边界等。
摘要由CSDN通过智能技术生成

pandas.cut() 函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。

基本用法

pandas.cut() 的基本语法如下:

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')
参数详解
  • x:需要被划分的一维数组或类数组对象。
  • bins
    • 一个整数,表示要生成的均匀分布的箱子的数量。
    • 一个序列,指定每个分箱的边界值。
  • right:布尔值,表示分箱的区间是左开右闭(right=True)还是左闭右开(right=False)。默认为True,即包含右边界。
  • labels
    • 数组或布尔值。这个参数用于设置每个箱子的标签。
    • 若为None,则返回结果为分箱时的整数编码。
    • 若为False,则返回整数编码而非独特标签。
    • 若传入数组,则应与结果的箱子数相同。
  • retbins:布尔值,若为True,则除了返回编码或标签外,还会返回每个分箱的边界。
  • precision:整数,指定小数精度。
  • include_lowest:布尔值,若为True,则第一个区间将是左闭合的。
  • duplicates:{‘raise’, ‘drop’},如果bin边界不是唯一的,则决定是否引发错误或删除非唯一边界。

示例

示例 1:使用整数创建均匀分箱

假设你有一组数据,你想将其分成4个等宽的区间:

import pandas as pd

data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
result = pd.cut(data, bins=4)
print(result)

输出将是数据分布在这四个区间的类别对象。

示例 2:使用自定义边界

如果你想根据自定义的边界来分箱,可以直接指定这些边界:

result = pd.cut(data, bins=[0, 2.5, 5.5, 8.5, 10])
print(result)

这会根据提供的边界值将数据分配到四个不同的区间中。

示例 3:包含边界和标签

你还可以通过labels参数为每个区间提供一个标签,通过include_lowest参数确保包含最低值:

result = pd.cut(data, bins=[0, 2.5, 5.5, 8.5, 10], labels=["Low", "Medium", "High", "Very High"], include_lowest=True)
print(result)

这将输出带有自定义标签的类别类型。

示例 4:返回分箱边界

如果你同时需要获取分箱的边界,可以设置retbins=True

result, bins = pd.cut(data, bins=4, retbins=True)
print(result)
print(bins)

这将返回分箱结果和每个箱的边界数组。

总结

pandas.cut() 是处理连续数据时非常实用的工具,它可以基于数值范围将数据划分为不同的类别。通过合理地使用这个功能,可以有效地将连续特征转换为有助于机器学习模型理解的离散特征

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值