【Python】pandas.cut()函数的用法

本文详细介绍了pandas.cut()函数在数据分析和机器学习中的应用,如何将连续数值变量转换为离散类别,以及其基本用法、参数解释和示例操作,包括整数分箱、自定义边界、标签设置和返回分箱边界等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas.cut() 函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。

基本用法

pandas.cut() 的基本语法如下:

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')
参数详解
  • x:需要被划分的一维数组或类数组对象。
  • bins
    • 一个整数,表示要生成的均匀分布的箱子的数量。
    • 一个序列,指定每个分箱的边界值。
  • right:布尔值,表示分箱的区间是左开右闭(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值