pandas.cut()
函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。
基本用法
pandas.cut()
的基本语法如下:
pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')
参数详解
- x:需要被划分的一维数组或类数组对象。
- bins:
- 一个整数,表示要生成的均匀分布的箱子的数量。
- 一个序列,指定每个分箱的边界值。
- right:布尔值,表示分箱的区间是左开右闭(