自定义 Action Bar

Action Bar是android3.0以后才引入的,主要是替代3.0以前的menu和tittle bar。在3.0之前是不能使用Action Bar功能的。这里引入了自定义的Action Bar,自定义Action bar也不是完全实现了 Action bar功能,只是在外形上相似。自定义Action bar没有实现overflow button(悬浮按钮)的功能,如果想进一步实现overflow button功能,可参考Android UI开发第十六篇——分享一个popuwindow实例.

xml

[html]  view plain copy print ?
  1. <com.nedu.android.widget.ActionBar  
  2.     android:id="@+id/actionbar"  
  3.     app:title="@string/some_title"  
  4.     style="@style/ActionBar"  
  5.        />  

[html]  view plain copy print ?
  1. <span style="font-size:18px;"> app:title 可选,也可以在使用时设置,actionBar.setTitle("Home")。</span>  
在Activity中,HomeAction处于Bar的最左侧,普通Action处于Bar的最右侧

[java]  view plain copy print ?
  1. ActionBar actionBar = (ActionBar) findViewById(R.id.actionbar);  
  2. // You can also assign the title programmatically by passing a  
  3. // CharSequence or resource id.  
  4. //actionBar.setTitle(R.string.some_title);  
  5. actionBar.setHomeAction(new IntentAction(this, HomeActivity.createIntent(this), R.drawable.ic_title_home_default));  
  6. actionBar.setDisplayHomeAsUpEnabled(true);  
  7. actionBar.addAction(new IntentAction(this, createShareIntent(), R.drawable.ic_title_share_default));  
  8. actionBar.addAction(new ExampleAction());  
自定义Action
创建自定义Action 仅需要实现一个Action接口,例如ExampleAction:
[java]  view plain copy print ?
  1. private class ExampleAction extends AbstractAction {  
  2.   
  3.       public ExampleAction() {  
  4.           super(R.drawable.ic_title_export_default);  
  5.       }  
  6.   
  7.       @Override  
  8.       public void performAction(View view) {  
  9.           Toast.makeText(OtherActivity.this,  
  10.                   "Example action", Toast.LENGTH_SHORT).show();  
  11.       }  
  12.   
  13.   }  

如果想修改UI属性可修改drawable、layout、values里面的文件。



代码:http://download.csdn.net/detail/xyz_lmn/4710843


/**
* @author 张兴业
* 邮箱:xy-zhang#163.com
* android开发进阶群:278401545
*
*/


内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波和扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程和仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于教学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值