- 博客(4351)
- 收藏
- 关注
原创 MATLAB实现:Laplacian Eigenmap流形学习算法详解
本文介绍了Laplacian Eigenmap(LE)降维算法的MATLAB实现函数Eigenmap。LE通过构建亲和矩阵W,利用图拉普拉斯矩阵的谱性质将高维数据映射到低维空间,保持局部几何结构。函数核心包括:智能选择特征分解策略(自动判断使用eig或eigs)、归一化拉普拉斯矩阵构造、去除平凡解和正交化处理等。该函数可自适应处理不同规模数据,具有数值稳定性保障,适用于数据可视化、流形学习和谱聚类等场景。通过输入亲和矩阵W和目标维度,函数输出低维嵌入坐标和对应特征值,为探索数据内在流形结构提供有效工具。
2026-01-15 00:07:41
10
原创 MATLAB实现核化局部敏感哈希(KLSH)编码函数详解
本文详细解析了核化局部敏感哈希(KLSH)在MATLAB中的编码实现。该算法通过高斯核函数将数据映射到高维特征空间,利用锚点机制和投影矩阵高效生成二进制哈希码。文章剖析了核心函数KLSH_compress的实现细节,包括核矩阵计算、线性投影和二值化过程,并强调了参数一致性对性能的重要性。该实现计算复杂度低,适合大规模在线查询,为非线性数据相似性搜索提供了有效解决方案。
2026-01-15 00:05:41
11
原创 密度敏感哈希(DSH)学习算法详解
密度敏感哈希(DSH)是一种高效的无监督哈希方法,通过自适应分割超平面生成二进制码。本文详细解析了DSH的MATLAB实现过程,包括聚类计算、密度权重分配和投影选择等关键步骤。DSH独特之处在于利用过分割聚类中心模拟数据密度分布,优先选择平衡的分割方向作为投影向量,从而在高密度区域分配更多比特位。代码实现包含初始化、k-means聚类、平衡度计算和模型构建等模块,最终生成适用于非均匀分布数据集的哈希码。该方法在图像检索等场景中表现优异,参数简单且易于扩展。
2026-01-14 00:32:48
15
原创 无监督谱回归(USR)模型测试阶段实现详解
本文详细解析了无监督谱回归(USR)模型的测试实现过程。USR通过训练阶段学习投影矩阵,测试阶段只需简单矩阵乘法即可将新数据映射到低维空间,效率极高。文章重点阐述了USR测试的核心思想、Lasso正则化处理方式、代码实现细节和使用注意事项,特别强调了其在线性运算、实时处理和大规模数据降维方面的优势。测试阶段完全保留训练得到的流形结构信息,无需重新计算图或核矩阵,相比传统谱方法效率提升显著,适合作为各类机器学习任务的预处理步骤。
2026-01-14 00:30:50
22
原创 MATLAB多列图例函数columnlegend详解与实现
摘要: MATLAB 默认的 legend 函数在曲线较多时会产生过长的单列图例,可能遮挡图形或超出边界。columnlegend 是一个自定义函数,可将图例强制排列为指定列数,支持多列布局、内外位置调整及多种图形对象(如线条、柱状图等)。其实现原理是先调用原生 legend,再重新计算布局并调整图例项的位置、缩放和边框。使用示例展示了如何将 10 条曲线的图例分 3 列显示,并支持 'NorthOutside' 等位置选项。该函数无需额外工具箱,兼容性强,能显著提升多曲线图的可读性,是 MATLAB 绘图
2026-01-14 00:28:53
108
原创 球面哈希(Spherical Hashing)学习算法实现详解
本文介绍了球面哈希(SpH)的高效实现方法,这是一种利用超球面划分特征空间的近似最近邻搜索技术。相比传统超平面哈希,SpH能更好地适应高维数据的球形分布特性。文章详细解析了SpH学习函数的实现原理,包括输入输出参数说明、核心算法流程和代码解读。该函数通过训练获得球心和半径参数,并对训练数据进行二进制编码,具有计算高效、适合中等规模数据集的特点。文中还提供了使用建议,强调数据预处理和码长选择的重要性。完整代码展示了从模型训练到数据编码的全过程,为大规模近似最近邻搜索提供了有效解决方案。
2026-01-14 00:26:54
11
原创 TensorLPP:张量局部保持投影算法详解与实现
摘要:TensorLPP是一种针对张量数据的降维方法,通过保留数据的局部邻域结构和空间相关性来改进传统LPP。该方法直接在张量空间上进行投影,避免了向量化导致的空间信息丢失。核心步骤包括数据预处理、邻接矩阵构建和交替优化求解投影矩阵。相比向量版LPP,TensorLPP更适用于图像、视频等具有空间结构的数据,能更好地捕捉多方向特征。本文详细介绍了TensorLPP的原理、实现流程及其在计算机视觉任务中的应用优势,并提供了简洁的MATLAB实现代码。
2026-01-14 00:24:56
84
原创 Matlab实现图正则化稀疏编码(GraphSC)算法详解
稀疏编码(Sparse Coding)是一种经典的无监督表示学习方法,它通过学习一组过完备基(字典),将输入信号表示为这些基的稀疏线性组合,在图像去噪、特征提取和压缩感知等领域表现出色。然而,传统稀疏编码仅关注单个样本的重构误差,忽略了样本之间的内在几何关系,导致在流形分布的数据上学到的表示可能丢失局部结构。图正则化稀疏编码(Graph Regularized Sparse Coding,简称GraphSC)正是为了解决这一问题而设计的。
2026-01-14 00:22:59
9
原创 MATLAB核函数构建工具constructKernel详解与实现
摘要:constructKernel是一个高效的MATLAB核矩阵构建函数,支持高斯核、多项式核和线性核等多种核类型。它能自动处理同数据集或异数据集的核计算,通过矩阵运算优化性能,特别适合机器学习中的核方法应用。函数设计简洁灵活,支持参数自适应估计,并确保核矩阵的对称性,是核方法实验中的实用工具。使用示例展示了其在降维、分类等任务中的应用方式,适合中等规模数据的核技巧实验。
2026-01-14 00:21:02
11
原创 半监督判别分析(SDA)算法详解与MATLAB实现
半监督判别分析(SDA)是一种融合监督与无监督信息的降维方法,通过结合线性判别分析(LDA)和局部保持投影(LPP)的优势,在保持类间判别性的同时利用无标签数据的局部几何结构。其核心是构建优化问题,将监督的类间散度与无监督的局部散度相结合,通过广义特征值求解投影矩阵。实现流程包括邻接矩阵构建、拉普拉斯正则化、散度矩阵计算等步骤。SDA特别适用于标签稀缺场景,能有效提升分类性能。使用时需调节监督与无监督的平衡参数,并注意数值稳定性处理。
2026-01-14 00:19:04
127
原创 无监督谱哈希(USPLH)训练函数实现详解
本文介绍了无监督谱哈希算法USPLH的实现与应用。该算法通过序列投影学习在无标签数据上生成高质量的二进制编码,相比传统方法具有更高的优化效率和平衡性。文章详细解析了一个MATLAB训练函数的实现过程,包括数据预处理、模型训练和二进制编码生成等关键步骤。该函数输入为训练数据矩阵和目标码长,输出训练模型、二进制编码和耗时,具有参数少、效率高的特点。使用建议包括数据预处理、码长选择和参数调整等注意事项,适用于图像检索和特征压缩等任务。
2026-01-14 00:17:07
10
原创 Matlab实现MCFS无监督特征选择算法详解
本文介绍了MCFS算法的Matlab实现MCFS_p,这是一种适用于高维数据的无监督特征选择方法。该算法通过构建k近邻图计算谱嵌入,再结合稀疏回归选择最具判别性的特征。函数支持有监督和无监督两种模式,可批量输出不同特征数量的选择结果。核心实现包括邻接矩阵构建、谱嵌入计算和LARS算法求解LASSO回归。文章详细说明了函数参数、使用场景和注意事项,特别适合处理图像、文本等高维数据,为特征选择实验提供了便捷工具。
2026-01-14 00:15:07
148
原创 球形哈希算法:基于超球体的二进制编码优化方法
摘要:球形哈希是一种高效的高维数据检索方法,通过将数据映射到超球体空间生成二进制编码。相比传统局部敏感哈希,它利用超球体分割数据,更好地适应数据分布特性。算法核心包括:1)随机初始化超球体中心;2)通过统计量评估覆盖点数和球间重叠;3)基于力学模拟迭代优化中心位置,使重叠区域接近理想值。MATLAB实现展示了如何通过距离计算、力调整和收敛判断逐步优化参数。该方法在图像检索等应用中表现优异,但计算复杂度随数据规模增长。
2026-01-13 00:37:33
12
原创 互补投影哈希(CPH)算法实现详解
本文介绍了一种高效的互补投影哈希(CPH)算法,该算法通过优化互补投影方向生成紧凑的二进制哈希码,在保持数据相似性的同时提高比特独立性和信息量。文章详细解析了核心实现函数及其子函数,包括核化处理、谱松弛初始化和梯度下降优化等关键步骤。算法通过逐比特迭代优化投影矩阵和阈值,利用互补信息确保比特多样性,最终生成训练样本的二进制编码。该实现结合核化处理和互补优化,适合中等规模数据集,在图像检索等任务中表现出色。参数调优建议和完整MATLAB代码(含中文注释)为实际应用提供了参考。
2026-01-13 00:35:35
14
原创 MATLAB实现固定基下的稀疏编码:支持LARs与SLEP的多稀疏度求解
本文介绍了一个高效通用的稀疏编码工具SparseCodingwithBasis,用于在固定基矩阵下快速计算数据样本的稀疏表示。该函数支持LARs和SLEP两种求解器,可灵活处理不同稀疏度需求。LARs模式能沿正则化路径计算多种基数的解,SLEP模式则通过L1正则化快速求解。函数具备批量处理、自动容错、稀疏存储等特性,适用于特征提取、稀疏度分析和算法模块化等场景。通过预计算Gram矩阵和优化存储方式,该工具能高效处理大规模数据,是现代稀疏编码管道的重要组件。
2026-01-13 00:33:37
12
原创 双层锚点图哈希(Two-Layer Anchor Graph Hashing)测试编码函数实现详解
本文介绍了双层锚点图哈希(Two-Layer Anchor Graph Hashing)方法,该方法通过引入双层阈值机制改进了单层锚点图哈希(AGH)。双层AGH在保持高效性的同时,显著提升了哈希码质量和检索精度。文章详细解析了双层AGH的测试函数实现,包括如何利用训练好的锚点、投影矩阵和双阈值对新数据快速生成高质量二进制哈希码。该方法采用前r/2位零阈值直接二值化,后r/2位使用学习到的双阈值进行精细调整的策略,能更好地适应数据非对称分布,减少量化误差,生成更平衡、更具区分度的哈希码。实验表明,双层AGH
2026-01-13 00:31:41
10
原创 谱回归(Spectral Regression)算法详解与MATLAB实现
本文提出了一种高效的谱回归(SR)方法,通过将传统谱嵌入转化为回归问题,显著提升了计算效率。该方法支持多种正则化方式(Ridge、Lasso、RidgeLasso等),针对不同场景提供优化策略:Ridge模式采用Cholesky分解或LSQR迭代求解;Lasso模式使用SLEP或LARs算法实现稀疏解。算法通过自动选择计算路径、内存优化和数值稳定处理,特别适合大规模数据。实验表明,SR在保持谱方法优势的同时,计算复杂度显著降低,为子空间学习任务提供了高效解决方案。
2026-01-13 00:29:43
11
原创 无监督顺序投影学习哈希:USPLH算法的训练实现
本文介绍了无监督顺序投影学习哈希(USPLH)方法,该方法通过迭代学习投影方向生成紧凑二进制编码。USPLH首先进行PCA降维获取第一位投影,然后在残差空间引入伪成对约束,逐步优化后续位投影。算法核心包括:1)数据预处理与中心化;2)首位PCA投影;3)残差空间约束生成与累积;4)顺序学习投影向量。实现中采用边界点采样策略构建相似矩阵,并通过加权历史约束确保比特独立性。该无监督方法适用于大规模检索任务,能有效提升哈希编码质量,但需注意参数调优。
2026-01-13 00:27:46
143
原创 MATLAB高效计算成对样本平方距离的sqdistance函数详解
本文介绍了一个MATLAB高效计算平方距离矩阵的函数sqdistance。该函数支持三种计算模式:单数据集内部平方欧氏距离、两个数据集间平方欧氏距离以及带马氏矩阵的平方距离。通过向量化运算和矩阵分解技巧,避免了显式循环,显著提升了计算效率。函数利用中心化处理和矩阵乘法优化,适用于k-means聚类、近邻搜索等场景,体现了MATLAB在科学计算中的性能优势。
2026-01-13 00:25:48
126
原创 谱回归判别分析(SRDA)预测函数详解与实现
本文介绍了谱回归判别分析(SRDA)的预测原理与实现。SRDA通过谱回归框架将LDA转化为回归问题,避免矩阵分解。预测阶段先将测试样本投影到低维空间,再根据最近类中心进行分类。函数支持普通Ridge正则化和Lasso稀疏模式,后者可评估不同基数下的性能。代码采用向量化计算,高效灵活,适用于人脸识别、文本分类等高维数据任务。SRDA预测过程简洁高效,体现了"简单高效"的设计理念。
2026-01-13 00:23:51
890
原创 互补投影哈希(CPH)编码过程详解
本文介绍了互补投影哈希(CPH)的无监督哈希方法及其MATLAB实现。CPH通过核化映射将数据隐式映射到高维空间,再通过线性投影和阈值量化生成紧凑二进制码。编码过程包括在线核化、中心化和二值化三个步骤,具有计算高效、非线性能力强等优势,特别适合实时检索场景。文章详细解析了CPH编码阶段的MATLAB代码实现,展示了其极简设计思想。该方法在保持数据局部结构的同时,实现了快速高效的哈希编码。
2026-01-13 00:21:50
10
原创 双层锚点图哈希(Two-Layer Anchor Graph Hashing)压缩函数实现详解
本文详细剖析了双层Anchor Graph Hashing(AGH2)的测试阶段压缩函数实现。该函数接收测试数据和训练模型,高效生成二进制哈希码并返回编码耗时。通过两级锚点机制,AGH2在保持计算效率的同时,能更好捕捉数据非线性结构,提升哈希码质量和检索精度。函数设计简洁,核心计算由优化函数完成,适合实时检索场景。双层AGH相比单层版本具有更高编码质量、低内存需求等优势,适用于大规模图像检索等应用。文章还提供了使用建议和完整MATLAB代码,帮助理解这一高效工具的工程实现。
2026-01-13 00:19:52
11
原创 MATLAB实现高效流形排序的出样扩展:单查询点快速排序
摘要:高效流形排序(EMR)测试函数EMRtest实现了新查询样本的快速排序计算。该函数利用训练阶段获得的地标点和稀疏表示结构,通过计算查询点与地标点的距离构建稀疏向量,并扩展表示矩阵。核心计算仅涉及小矩阵运算,时间复杂度为O(p³),与数据库规模无关,保证了毫秒级响应。该函数适用于在线图像检索、实时推荐系统等需要快速排序的应用场景,完整实现了EMR框架的离线训练和在线查询功能。
2026-01-12 00:50:46
16
原创 无监督谱回归(USR)模型训练实现详解
本文详细介绍了无监督谱回归(USR)模型的训练实现。USR通过将谱嵌入问题转化为回归框架,显著提升了计算效率。核心流程包括:构建k近邻相似性图、生成图拉普拉斯特征向量作为回归目标、数据预处理和正规化回归求解。文章深入解析了参数配置、相似性图构建、响应向量生成等关键步骤的实现细节,并提供了完整的Matlab代码实现。USR特别适合处理大规模高维数据,在保持流形结构的同时具有较低的计算复杂度,可作为聚类、分类等任务的高效降维预处理方法。
2026-01-12 00:48:50
18
原创 谱回归判别分析(SRDA)训练函数深度解析与实现
这个SRDA训练函数设计灵活而强大,集成了监督/半监督学习、多种正则化方式以及稀疏解支持于一身。它不仅保留了LDA优秀的判别能力,还通过谱回归框架实现了高效可扩展,成为处理高维大规模分类与降维任务的利器。在实际项目中,只需简单配置options即可适配不同场景,极大提升了开发效率。
2026-01-12 00:46:54
21
原创 MATLAB 中递归创建多层目录的实用函数详解
摘要:本文介绍了一个MATLAB工具函数mkAbsDir,用于递归创建多层目录结构。该函数支持绝对/相对路径,能自动处理路径分隔符的跨平台兼容性,并提供IsFile参数区分目录路径和文件路径模式。实现原理是通过分解路径层级,逐层检查并创建缺失目录。相比递归实现,该方法更简洁高效,适合在项目初始化或文件保存前确保目录存在。函数代码仅20行,无外部依赖,是提升MATLAB工程健壮性的实用工具。
2026-01-12 00:44:55
137
原创 MATLAB实现基于Sinkhorn距离的非负矩阵分解(SDNMF)算法详解
摘要:本文提出了一种基于Sinkhorn距离的非负矩阵分解方法(SDNMF),通过引入Sinkhorn距离和图正则化项,改进了传统NMF的性能。SDNMF在保持数据非负性的同时,利用最优传输距离度量重构误差,并通过相似性图保留样本间几何结构。算法采用乘法更新规则进行优化,支持自定义参数和初始值设置,特别适用于图像、文本等具有流形结构的数据分析。相比标准NMF,SDNMF具有更强的鲁棒性和结构保持能力,在特征提取和主题建模等任务中表现更优。
2026-01-12 00:42:57
14
原创 二进制重构嵌入(BRE)哈希算法优化函数详解
本文介绍了一种二进制重构嵌入(BRE)算法,用于生成高质量的二进制哈希码。该算法通过最小化汉明距离与原始距离之间的重构误差来优化哈希函数。核心优化函数采用坐标下降策略,逐位更新哈希位,通过稀疏邻域对计算和增量式阈值搜索实现高效优化。输入包括初始投影矩阵和参数结构体,输出为优化后的投影矩阵和二进制哈希码。算法特点包括:使用PCA初始化、随机锚点选择、邻域稀疏计算以及增量式优化,适用于图像检索等场景。
2026-01-12 00:41:02
251
原创 MATLAB 参数名值对处理利器:getargs 函数详解
本文介绍了一个MATLAB自定义参数解析函数getargs,用于高效处理函数调用中的名/值对参数。该函数支持默认值设置、未识别参数收集和友好的错误提示,相比官方inputParser更轻量且兼容老版本。核心实现包括参数初始化、成对校验、模糊匹配处理和灵活的错误返回机制。通过示例展示了如何解析绘图函数的颜色、线型等可选参数,并比较了严格模式和宽松模式的使用差异。该函数虽简单但功能完备,在性能敏感场景和老项目中仍具实用价值。
2026-01-12 00:39:03
15
原创 MATLAB实现:SRKDA核判别分析预测函数详解
本文介绍了谱回归核判别分析(SRKDA)的预测函数CSRKDApredict(代码中为SRKDApredict)。该函数利用训练好的SRKDA模型,通过分块计算测试样本与陆标点的核矩阵,将其投影到低维判别子空间后,采用最近类中心规则进行分类。函数采用内存优化设计,通过设定最大矩阵规模动态分块处理,有效避免了大规模测试数据下的内存溢出问题。核心流程包括核矩阵计算、低维投影和欧氏距离分类三个步骤,兼具核方法的非线性处理能力和高效计算特性,适用于人脸识别、文本分类等高维数据场景。
2026-01-12 00:37:06
126
原创 MATLAB实现局部敏感哈希(LSH)编码函数详解
本文介绍了局部敏感哈希(LSH)在MATLAB中的实现方法。LSH是一种高效的近似最近邻搜索技术,通过随机投影将高维数据映射到低维二进制空间。文章详细解析了一个MATLAB实现的LSH编码函数,该函数利用预训练的随机投影矩阵对输入数据进行快速哈希编码,仅需一次矩阵乘法和符号判断即可生成二进制哈希码。函数输出为逻辑矩阵形式的哈希码和编码耗时,具有实现简单、计算高效的特点,适用于大规模相似搜索任务。文中还提供了完整的MATLAB代码实现和详细注释,解释了算法原理和具体实现步骤。
2026-01-12 00:35:07
376
原创 MATLAB特征归一化函数详解:高效实现行/列L-p范数归一化
fea:输入的特征矩阵(可以是稠密或稀疏矩阵)row:可选参数,默认为1当row == 1时,对每一行进行归一化(常用于每个样本作为一个行向量的情况)当row == 0时,对每一列进行归一化(常用于每个特征作为一个列向量的情况)norm:可选参数,默认为2,表示使用L-p范数(p ≥ 1)函数的核心目标是:使指定的行或列的L-p范数变为1。
2026-01-12 00:33:08
9
原创 MATLAB图邻接矩阵构建工具constructW详解与实现
摘要: constructW是一个高效的MATLAB函数,用于构建图嵌入算法中的邻接矩阵(相似度矩阵)。它支持无监督KNN和监督模式两种邻域选择方式,以及二值权重、热核权重和余弦相似度三种权重模式,并提供了LDA特化、半监督扩展等高级选项。通过分块计算和稀疏矩阵存储优化,该函数能高效处理大规模数据集。核心功能包括自适应热核参数估计、真KNN图构建及监督模式下的同类连接策略,适用于流形学习和谱聚类实验。使用示例展示了不同配置下的调用方法,体现了其灵活性和实用性。
2026-01-11 00:59:22
15
原创 ITQ算法:学习高效二进制哈希码的迭代量化方法
本文介绍了迭代量化(ITQ)这一经典无监督哈希学习方法。ITQ通过在PCA降维后的数据上寻找最优正交旋转矩阵,最小化二进制编码的量化误差。算法采用交替优化策略:固定旋转矩阵优化二进制码,再固定二进制码求解最优旋转矩阵,通常50次迭代内收敛。MATLAB实现展示了随机正交矩阵初始化、迭代优化和最终二进制码生成过程。ITQ方法简单高效,无需标签信息,在图像检索等大规模数据场景中表现优异,显著提升了PCA直接量化的效果,至今仍是哈希学习领域的重要基准方法。
2026-01-11 00:57:22
16
原创 MATLAB实现局部敏感哈希(LSH)学习算法详解
本文介绍了局部敏感哈希(LSH)算法在MATLAB中的实现方法。LSH是一种无监督哈希技术,通过随机超平面投影将高维数据映射为二进制哈希码,使相似数据在汉明空间中具有更高碰撞概率。文章详细解析了MATLAB实现代码,包括高斯随机矩阵生成、批量投影计算和二值化处理等关键步骤。该实现具有简单高效的特点,时间复杂度为O(n×d×k),适合大规模近似最近邻搜索任务。文中还提供了使用建议和完整代码注释,展示了LSH算法在保持理论保证的同时兼具实现简洁性的优势。
2026-01-11 00:55:25
127
原创 各向同性哈希(Isotropic Hashing)编码过程详解
本文介绍了各向同性哈希(IsoH)的编码实现,这是一种高效的无监督线性哈希方法。IsoH通过PCA降维和正交旋转使投影方向方差均衡,实现比特均匀分布。其编码过程仅需两次矩阵乘法和阈值二值化,计算简单高效。MATLAB实现展示了IsoH的三大优势:比特均衡性强、编码速度快、模型轻量,特别适合大规模实时检索任务。该算法是学习无监督哈希的优秀范例,其简洁的线性操作蕴含了降维与投影优化的经典理论。
2026-01-11 00:53:26
15
原创 Matlab实现GNMF测试阶段投影:将新数据映射到低维表示
摘要:本文介绍了一个高效实现图正则化非负矩阵分解(GNMF)测试阶段投影的函数GNMFtest。该函数基于训练好的基矩阵U,通过非负最小二乘法快速计算测试数据X的低维表示V,满足X≈UV^T且V非负。核心原理是通过闭式解求解线性方程并强制非负约束,具有计算高效、数值稳定等特点。函数适用于GNMF特征提取后的聚类、分类等任务,实现"训练一次、投影多次"的流程,显著提升系统效率。代码包含输入验证、矩阵对称化等优化措施,是一个实用的特征提取配套工具。
2026-01-11 00:51:29
25
原创 高效构建权重矩阵 ContW 函数实现详解
本文提出了一种高效的ContW函数,用于构建大规模数据的相似性权重矩阵。该函数通过锚点近似方法显著降低了计算复杂度:首先选择p个锚点(支持kmeans/random/given等模式),然后分批计算样本到最近r个锚点的距离并构建稀疏矩阵Z,最后归一化得到H矩阵,使得W=H*H'。相比传统O(n²)方法,该算法复杂度降至O(nr),内存占用大幅减少,适合哈希学习和谱聚类等任务。函数支持参数定制,并采用分批处理机制,能够高效处理百万级数据。
2026-01-11 00:49:32
14
原创 SRKDA训练阶段实现:谱回归核判别分析的核心算法详解
摘要: 本文介绍了谱回归核判别分析(SRKDA)的训练实现方法。SRKDA通过将核判别分析转化为正则化回归问题,避免了传统KDA的高计算复杂度。该算法支持全监督和半监督模式,可灵活选择L2或L1正则化,并利用无标签数据的几何结构提升性能。训练过程包含响应向量生成、核矩阵计算、正则化求解等关键步骤,支持大样本近似处理。输出模型包含投影系数等关键信息,适用于高维非线性分类任务,在人脸识别、文本分类等领域具有广泛应用价值。
2026-01-11 00:47:34
543
原创 MATLAB生成双噪声圆环玩具数据集的GenTwoNoisyCircle函数详解
摘要:GenTwoNoisyCircle是一个简洁的MATLAB函数,用于生成经典的双噪声圆环数据集。该数据集包含两个同心圆环(内环标签1,外环标签2),每个圆环200个样本点,通过均匀噪声使半径在特定范围内波动。这种非线性可分结构(二维空间中的一维流形)常用于测试流形学习算法(如谱聚类、LLE等)的有效性,具有可视化直观、噪声可控等特点。函数默认生成400个样本,可通过简单修改扩展参数设置,是算法验证和教学演示的理想工具。
2026-01-11 00:45:34
13
SQL实战进阶:数据库高级查询与优化技巧教程
2026-01-02
计算机二级通关宝典:C语言程序设计基础教程
2026-01-02
JavaScript全栈工程化与性能调优基础教程
2026-01-02
PHP开发与安全防护实战基础教程
2026-01-02
软考全科备战资源包使用基础教程
2026-01-01
C#全栈开发资源包入门教程
2026-01-01
Go语言高并发与云原生项目实战入门教程
2026-01-01
TypeScript类型系统与全栈项目实战教程
2026-01-01
Unity游戏项目实战入门教程
2025-12-29
基于STM32的嵌入式驱动开发实战项目教程
2025-12-29
嵌入式通信协议栈系列项目开发基础教程
2025-12-29
嵌入式AIoT应用场景实战项目搭建教程
2025-12-29
智能硬件产品系统设计系列:基础教程
2025-12-28
云原生Kubernetes集群搭建与运维实战教程
2025-12-28
网络安全与渗透测试实战入门教程
2025-12-28
嵌入式Linux系统开发与实战项目基础教程
2025-12-28
AI 工程化与 MLOps 实践教程
2025-12-27
Web前端实战项目系列:响应式电商网站基础教程
2025-12-27
后端工程与微服务架构基础教程
2025-12-27
极简版「圣诞树」创意赛编程教程
2025-12-27
Kotlin跨平台开发与Android架构实战教程
2026-01-07
Rust系统编程与WebAssembly实践教程
2026-01-07
Swift全平台开发与iOS上架全流程基础教程
2026-01-07
基于STM32单片机的智能家居控制系统实战教程
2026-01-07
移动应用开发项目实战:从零开始构建你的第一个APP教程
2026-01-06
Matlab工程建模、数据分析与可视化工具箱基础教程
2026-01-06
Java微服务架构实战入门教程
2026-01-05
Python全栈开发资源包基础教程:环境搭建与项目实战
2026-01-05
AI人工智能实战项目:智能问答系统基础教程
2026-01-05
Java高并发系统与安全监控基础教程
2026-01-05
C语言系统编程与数据结构实战基础教程
2026-01-04
C++高性能计算与系统开发实战基础教程
2026-01-04
大学生创新创业训练计划资源包项目开发基础教程
2026-01-04
电赛硬件设计、控制算法与调试手册:从入门到实践
2026-01-03
美赛建模工具包入门教程
2026-01-03
ACM算法模板与竞赛实战进阶基础教程
2026-01-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅