普利姆(Prime)算法

普利姆算法主要用于寻找稠密图的最小生成树,时间复杂度为O(n*n)。该算法通过将顶点分为已处理和未处理两部分,不断找到与已处理顶点相连的最小边并将其加入最小生成树。具体步骤包括初始化,查找最小权值边,更新边权值,并递归重复此过程,直至所有顶点加入最小生成树集合。
摘要由CSDN通过智能技术生成

普利姆(Prime)算法(只与顶点相关)

算法描述:

普利姆算法求最小生成树时候,和边数无关,只和定点的数量相关,所以适合求稠密网的最小生成树,时间复杂度为O(n*n)。
算法过程:
1.将一个图的顶点分为两部分,一部分是最小生成树中的结点(A集合),另一部分是未处理的结点(B集合)。
2.首先选择一个结点,将这个结点加入A中,然后,对集合A中的顶点遍历,找出A中顶点关联的边权值最小的那个(设为v),将此顶点从B中删除,加入集合A中。
3.递归重复步骤2,直到B集合中的结点为空,结束此过程。
4.A集合中的结点就是由Prime算法得到的最小生成树的结点,依照步骤2的结点连接这些顶点,得到的就是这个图的最小生成树。
算法实现具体过程:
1.将第一个点放入最小生成树的集合中(标记visit[i]=1意思就是最小生成树集合)。
2.从第二个点开始,初始化lowcost[i]为跟1点相连(仅仅相连)的边的权值(lowcost[i]不是这个点的最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值