题目描述
给定一个非负整数数组 nums 和一个整数 m ,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。
示例 1:
输入:nums = [7,2,5,10,8], m = 2
输出:18
解释:
一共有四种方法将 nums 分割为 2 个子数组。 其中最好的方式是将其分为 [7,2,5] 和 [10,8] 。
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
示例 2:
输入:nums = [1,2,3,4,5], m = 2
输出:9
示例 3:
输入:nums = [1,4,4], m = 3
输出:4
数组中最大值的下界 l 是数组中的最小值,上界 r 是数组中所有数字之和。二分查找满足条件的子数组之和,并且去看该子数组之和是否满足分割的子数组个数小于等于m。二分的左边界为 l ,右边界为 r。如果划分的mid不满足条件,那么说明给定的mid也就是数组的和太小了,因此 l=mid+1。cnt<=m这个条件,如果cnt<m,数组中每个元素为非负整数,那么意味着可以将子数组个数大于等于2的数组划分出来,使得最终的子数组个数等于cnt。
class Solution {
public:
bool check(vector<int>& nums,int mid,int m)
{
int sum=0;
int cnt=0;
for(auto x:nums)
{
if(x>mid) return false;
else if(sum+x>mid)
{
sum=x;
cnt++;
}
else sum+=x;
}
if(sum) cnt++;
return cnt<=m;
}
int splitArray(vector<int>& nums, int m) {
int l=nums[0],r=0;
for(auto x:nums)
{
r+=x;
l=min(x,l);
}
while(l<r)
{
int mid=l+r>>1;
if(check(nums,mid,m)) r=mid;
else l=mid+1;
}
return r;
}
};