python
文章平均质量分 81
超爱太阳雨
这个作者很懒,什么都没留下…
展开
-
matplotlib绘图(标题、标签、刻度值、设置刻度值)
目录一、添加标题①pyplot编程方式添加标题(plt.title)②面向编程方式添加标题(ax.set_title)二、添加标签①pyplot编程方式添加标签(plt.xlabel andplt.ylabel)②面向对象编程方式添加标签(ax.set_xlabel and ax.set_ylabel)三、修改刻度值(plt.xticks and plt.yticks)四、设置X、Y轴刻度值上下限(plt.xlim and plt.ylim)原创 2022-04-25 21:39:51 · 9209 阅读 · 0 评论 -
matplotlib.pyplot.violinplot()绘制小提琴图
一、matplotlib.pyplot.violinplot()语法violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False, showextrema=True, showmedians=False, quantiles=None, points=100, bw_method=None, *, data=None)二、绘制小提琴图①绘制简单小提琴图import matplotlib.pyplo原创 2022-04-20 21:08:33 · 3604 阅读 · 0 评论 -
matplotlib.pyplot.boxplot()绘制箱型图
目录一、matplotlib.pyplot.boxplot()语法二、绘制箱型图①绘制简单箱型图②各个参数绘制箱型图(1)notch参数(bool值,是否凹口的形式展现箱线图,默认值False非凹口)(2)sym(str,指定异常点的形状,默认为+号显示)(3)vert参数(bool值,是否需要将箱线图垂直摆放,默认True垂直摆放)(4)widths参数(float值,指定箱线图的宽度,默认值:0.5)(5)patch_artist(bool值,是否填充箱体颜...原创 2022-04-19 21:23:24 · 14259 阅读 · 1 评论 -
matplotlib.pyplot.pie()绘制饼图
一、matplotlib.pyplot.pie()语法二、绘制饼图① 绘制简单饼图②各个参数绘制的饼图(1)explode参数(数组,设置各部分相隔多少)(2)labels参数(列表,设置各部分标签)(3)autopct参数(显示饼图内的百分比)(4)pctdistance参数(float值,设置autopct的位置刻度,默认值0.6)(5)shadow参数(bool值,设置是否有阴影,默认值False)(6)labeldistance参数(设置饼块外标签与圆心原创 2022-04-18 21:33:22 · 4647 阅读 · 0 评论 -
matplotlib.pyplot.legend()参数详解
matplotlib.pyplot.legend()参数 loc(默认best,自动选择):设置图例位置 upper left(2) upper center(9) upper right(1) center left(6) center(10) center right(7) lower left(3) lower center(8) lower right(4) bbox_to_anchor:设置图例位置 bbox.原创 2022-04-18 21:16:55 · 16218 阅读 · 2 评论 -
matplotlib.pyplot.hist()绘制直方图
一、matplotlib.pyplot.hist()语法二、绘制直方图①绘制简单直方图②:各个参数绘制的直方图(1)histtype参数(设置样式bar、barstacked、step、stepfilled)(2)range参数(指定直方图数据的上下界,默认包含绘图数据的最大值和最小值(范围))(3)orientation参数 (设置直方图的摆放位置,vertical垂直方向 horizontal水平方向,默认值:vertical垂直方向)(4)density参数(bool值原创 2022-04-17 16:32:55 · 18301 阅读 · 5 评论 -
matplotlib.pyplot.bar()与barh()绘制条形图
一、matplotlib.pyplot.bar()语法二、 matplotlib.pyplot.barh()语法三、绘制条形图①:绘制简单垂直条形图(pyplot编程方式)②绘制简单水平条形图(面向对象编程方式)③绘制带样式的垂直条形图(pyplot与面向对象结合编程方式)④绘制带样式的水平条形图(面向对象编程方式)⑤分组条形图(面向对象编程方式)⑥堆叠条形图(面向对象编程方式)⑦对称条形图(面向对象与pyplot结合编程方式)原创 2022-04-15 17:19:15 · 12130 阅读 · 1 评论 -
matplotlib.pyplot.scatter()绘制散点图
一、matplotlib.pyplot.scatter()语法scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)常用参数:x,y:数据位置。 s:标记大小,都一样大就填写一个数,想不同点大小不原创 2022-04-13 21:58:40 · 1368 阅读 · 0 评论 -
matplotlib.pyplot.plot()绘制折线图
一、matplotlib.pyplot.plot()语法plot(*args, scalex=True, scaley=True, data=None, **kwargs)*args参数:x,y:数组或标量,数据点的水平/垂直坐标。 fmt:格式字符串。快速设置linestyle、color的缩写。data:带有标记数据的对象,如果给出,提供标签名称。scalex,scaley:默认值True,决定视图限制是否适应。**kwargs参数:Agg_filter:一个过滤函数,它接原创 2022-04-13 19:42:17 · 1712 阅读 · 0 评论 -
Matplotlib marker参数样式大全
一、样式大全标记类型 标记样式 效果 o 实心圆 . 点 , 像素点 + 加号 * 星号 x 乘号 X 填充乘号 s 正方形 D 胖菱形 d 瘦菱形 p 五边形 h 六边形 H 六边形 8 八边形 ^ 上三角 v...原创 2022-04-11 16:06:17 · 2278 阅读 · 0 评论 -
Matplotlib绘图(进阶篇)
目录一、创建图像并设置分辨率二、绘制图像设置坐标轴的上下限三、移动坐标脊柱使用gca()四、添加图例使用label参数五、注释①有指向型文本注释 annotate()②无指向型文本注释 text()六、保存图片savefig()一、创建图像并设置分辨率import matplotlib.pyplot as pltimport numpy as np# 创建一个8*6的图,并设置分辨率为80plt.Figure(figsize=(8,6),dpi=8...原创 2022-04-09 18:51:15 · 4830 阅读 · 0 评论 -
Matplotlib绘图(基础篇)
一、Matplotlib绘图的编程方式:1、pyplot: 是 Matplotlib 的子库,提供了和 MATLAB 类似的绘图 API。(常用)2、pylab:将Matplotlib和Numpy合并的模块,模拟Matlab的编程环境。(不推荐使用)3、面向对象的方式:Matplotlib的精髓,更基础和底层的方式。(常用)二、Matplotlib绘图基础1、Matplotlib绘图标记使用plot()方法的marker参数定义2、Matplotlib绘图线原创 2022-04-09 12:23:23 · 14767 阅读 · 0 评论 -
Pandas基础题一百道(16~20)
目录16、打印DataFrame的前后数据行①:打印DataFrame②:打印DataFrame前10行数据③:打印DataFrame后十行数据17、查看DataFrame的信息和基本数据统计①:打印DataFrame②:查看DataFrame的基本信息18、统计数据列的值出现的次数①:数据②:统计数据列的值出现的次数19、DataFrame前N行存入CSV文件①:数据②:选取前五行数据方法一:方法二:③:将筛选的数据存入CSV文...原创 2022-04-01 22:50:19 · 4413 阅读 · 0 评论 -
Pandas基础题一百道(前15)
目录1、使用List创建Series2、使用Dict创建Series3、将Series转换成List4、将Series转换成DataFrame5、借助Numpy创建Series6、转换Series数据类型(要求转换为int)7、给Series添加新的元素(要求添加物理与化学成绩)8、Series转换为DataFrame(reset_index)9、使用字典创建一个DataFrame10、设置DataFrame索引列11、生成一个月份的所有天(要求输出2...原创 2022-04-01 19:47:02 · 3409 阅读 · 0 评论