机器学习 第四讲 决策树和随机森林

决策树和随机森林

在这里插入图片描述

一、认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。

比如:你母亲要给你介绍男朋友,是这么来对话的: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。

在这里插入图片描述

二、信息论基础-银行贷款分析

银行贷款数据
在这里插入图片描述
你如何去划分是否能得到贷款?
在这里插入图片描述
在这里插入图片描述
决策树的实际划分
在这里插入图片描述
g(D,A) = H(D)-H(D|A)
H(D) = -(9/15log9/15 + 6/15log6/15 ) = 0.2922
g(D,年龄) = H(D)-H(D’|年龄) = 0.2922 - [(1/3H|青年) + (1/3H|中年) + (1/3H|老年)]
H(青年) = - (2/5log2/5 + 3/5log3/5) = 0.2923

三、决策树的生成

信息的度量和作用

在这里插入图片描述
猜谁是冠军?假设有32支球队

信息的度量和作用
每猜一次给一块钱,告诉我是否猜对了,那么我需要掏多少钱才能知道谁是冠军?我可以
把球编上号,从1到32,然后提问:冠 军在1-16号吗?依次询问,只需要五次,就可以知
道结果

信息论的创始人,香农是密歇根大学学士,麻省理工学院博士。
1948年,香农发表了划时代的论文——通信的数学原理,奠定了
现代信息论的基础
信息的单位:比特
在这里插入图片描述
信息熵
“谁是世界杯冠军”的信息量应该比5比特少。香农指出,它的准确信息量应该是:
H = -(p1logp1 + p2logp2 + … + p32log32)
H的专业术语称之为信息熵,单位为比特。
公式:在这里插入图片描述
当这32支球队夺冠的几率相同时,对应的信息熵等于5比特

决策树的划分依据之-信息增益
特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件
下D的信息条件熵H(D|A)之差,即公式为:
在这里插入图片描述
信息增益的计算
结合前面的贷款数据来看我们的公式:
信息熵的计算:
在这里插入图片描述
条件熵的计算:在这里插入图片描述

常见决策树使用的算法

  • ID3
    信息增益 最大的准则
  • C4.5
    信息增益比 最大的准则
  • CART
    回归树: 平方误差 最小
    分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则

sklearn决策树API
class sklearn.tree.DecisionTreeClassifier(criterion=‘gini’, max_depth=None,random_state=None)
决策树分类器
criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子
method:
decision_path:返回决策树的路径

四、泰坦尼克号乘客生存分类

1.泰坦尼克号案例

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。在泰坦尼克号的数
据帧不包含从剧组信息,但它确实包含了乘客的一半的实际年龄。关于泰坦尼克号旅客的数据
的主要来源是百科全书Titanica。这里使用的数据集是由各种研究人员开始的。其中包括许多
研究人员创建的旅客名单,由Michael A. Findlay编辑。
我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,
船和性别。乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。
其中age数据存在缺失。
数据:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt

2.泰坦尼克号乘客生存分类模型

1、pd读取数据
2、选择有影响的特征,处理缺失值
3、进行特征工程,pd转换字典,特征抽取x_train.to_dict(orient=“records”)
4、决策树估计器流程

3.决策树的结构、本地保存

1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式
tree.export_graphviz(estimator,out_file=‘tree.dot’,feature_names=[’’,’’])
2、工具:(能够将dot文件转换为pdf、png)
安装graphviz
ubuntu:sudo apt-get install graphviz
3、运行命令
dot -Tpng tree.dot -o tree.png

'''
1、pd读取数据
2、选择有影响的特征,处理缺失值
3、进行特征工程,pd转换字典,特征抽取x_train.to_dict(orient="records")
4、决策树估计器流程
'''

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz


def decision():
    """
    决策树对泰坦尼克号进行预测
    :return: None
    """
    # 获取数据
    titan = pd.read_csv('titanic.txt')
    # print(titan.head())
    '''
       row.names pclass  survived  ...      ticket   boat     sex
    0          1    1st         1  ...  24160 L221      2  female
    1          2    1st         0  ...         NaN    NaN  female
    2          3    1st         0  ...         NaN  (135)    male
    3          4    1st         0  ...         NaN    NaN  female
    4          5    1st         1  ...         NaN     11    male'''
    # print(titan.info())
    '''
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1313 entries, 0 to 1312
    Data columns (total 11 columns):
     #   Column     Non-Null Count  Dtype  
    ---  ------     --------------  -----  
     0   row.names  1313 non-null   int64  
     1   pclass     1313 non-null   object 
     2   survived   1313 non-null   int64  
     3   name       1313 non-null   object 
     4   age        633 non-null    float64
     5   embarked   821 non-null    object 
     6   home.dest  754 non-null    object 
     7   room       77 non-null     object 
     8   ticket     69 non-null     object 
     9   boat       347 non-null    object 
     10  sex        1313 non-null   object 
    dtypes: float64(1), int64(2), object(8)
    memory usage: 113.0+ KB
    None'''
    # 处理数据:找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]
    y = titan[['survived']]
    # print(x)
    '''
         pclass      age     sex
    0       1st  29.0000  female
    1       1st   2.0000  female
    2       1st  30.0000    male
    3       1st  25.0000  female
    4       1st   0.9167    male
    ...     ...      ...     ...
    1308    3rd      NaN    male
    1309    3rd      NaN    male
    1310    3rd      NaN    male
    1311    3rd      NaN  female
    1312    3rd      NaN    male
    
    [1313 rows x 3 columns]
    '''
    # print(y)
    '''
          survived
    0            1
    1            0
    2            0
    3            0
    4            1
    ...        ...
    1308         0
    1309         0
    1310         0
    1311         0
    1312         0
    
    [1313 rows x 1 columns]'''
    # 处理缺失值
    x['age'].fillna(x['age'].mean(), inplace=True)  # 给age的缺失值添加平均值,inplace=True修改它本身
    # print(x)
    '''
         pclass        age     sex
    0       1st  29.000000  female
    1       1st   2.000000  female
    2       1st  30.000000    male
    3       1st  25.000000  female
    4       1st   0.916700    male
    ...     ...        ...     ...
    1308    3rd  31.194181    male
    1309    3rd  31.194181    male
    1310    3rd  31.194181    male
    1311    3rd  31.194181  female
    1312    3rd  31.194181    male
    
    [1313 rows x 3 columns]
    '''
    # 分割数据 训练集  测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
    # 特征工程处理  特征->类别 -> one_hot编码  0 1 2
    dic = DictVectorizer(sparse=False)

    x_train = dic.fit_transform(x_train.to_dict(orient='records'))
    x_test = dic.fit_transform(x_test.to_dict(orient='records'))
    # print(x_train)
    '''
        [[12.          0.          1.          0.          1.          0.        ]
     [31.19418104  0.          0.          1.          0.          1.        ]
     [31.19418104  0.          0.          1.          0.          1.        ]
     ...
     [31.19418104  1.          0.          0.          1.          0.        ]
     [ 9.          0.          0.          1.          0.          1.        ]
     [30.          0.          1.          0.          1.          0.        ]]
    '''
    # print(dic.get_feature_names())
    '''['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']'''
    # 用决策树进行预测
    dec = DecisionTreeClassifier()
    dec.fit(x_train, y_train)

    print("预测的准确率", dec.score(x_test, y_test))
    '''预测的准确率 0.8206686930091185'''
    # 本地保存
    export_graphviz(dec, out_file='./tree.dot',feature_names=['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male'])

    return None


if __name__ == '__main__':
    decision()

在这里插入图片描述
在这里插入图片描述

五、决策树的优缺点以及改进

优点:
> 简单的理解和解释,树木可视化。
> 需要很少的数据准备,其他技术通常需要数据归一化,
缺点:
> 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
> 决策树可能不稳定,因为数据的小变化可能会导致完全不同的树被生成
改进:
> 减枝cart算法
> 随机森林

六、集成学习方法-随机森林

(1)、什么是随机森林
(2)、随机森林的过程、优势
(3)、泰坦尼克号乘客生存分类分析

1.集成学习方法:

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终结果会是True.

2.学习算法

根据下列算法而建造每棵树:
1.用N来表示训练用例(样本)的个数,M表示特征数目。
2.输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。
3.从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

为什么要随机抽样训练集?
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

为什么要有放回地抽样?
如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

集成学习API
sklearn.ensemble.RandomForestClassifier(n_estimators=10,criterion=‘gini’,max_depth=None, bootstrap=True,random_state=None)
随机森林分类器
n_estimators:integer,optional(default = 10) 森林里的树木数量
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样

'''
1、pd读取数据
2、选择有影响的特征,处理缺失值
3、进行特征工程,pd转换字典,特征抽取x_train.to_dict(orient="records")
4、决策树估计器流程
'''

import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier

def decision():
    """
    决策树对泰坦尼克号进行预测
    :return: None
    """
    # 获取数据
    titan = pd.read_csv('titanic.txt')
    # print(titan.head())
    '''
       row.names pclass  survived  ...      ticket   boat     sex
    0          1    1st         1  ...  24160 L221      2  female
    1          2    1st         0  ...         NaN    NaN  female
    2          3    1st         0  ...         NaN  (135)    male
    3          4    1st         0  ...         NaN    NaN  female
    4          5    1st         1  ...         NaN     11    male'''
    # print(titan.info())
    '''
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1313 entries, 0 to 1312
    Data columns (total 11 columns):
     #   Column     Non-Null Count  Dtype  
    ---  ------     --------------  -----  
     0   row.names  1313 non-null   int64  
     1   pclass     1313 non-null   object 
     2   survived   1313 non-null   int64  
     3   name       1313 non-null   object 
     4   age        633 non-null    float64
     5   embarked   821 non-null    object 
     6   home.dest  754 non-null    object 
     7   room       77 non-null     object 
     8   ticket     69 non-null     object 
     9   boat       347 non-null    object 
     10  sex        1313 non-null   object 
    dtypes: float64(1), int64(2), object(8)
    memory usage: 113.0+ KB
    None'''
    # 处理数据:找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]
    y = titan[['survived']]
    # print(x)
    '''
         pclass      age     sex
    0       1st  29.0000  female
    1       1st   2.0000  female
    2       1st  30.0000    male
    3       1st  25.0000  female
    4       1st   0.9167    male
    ...     ...      ...     ...
    1308    3rd      NaN    male
    1309    3rd      NaN    male
    1310    3rd      NaN    male
    1311    3rd      NaN  female
    1312    3rd      NaN    male
    
    [1313 rows x 3 columns]
    '''
    # print(y)
    '''
          survived
    0            1
    1            0
    2            0
    3            0
    4            1
    ...        ...
    1308         0
    1309         0
    1310         0
    1311         0
    1312         0
    
    [1313 rows x 1 columns]'''
    # 处理缺失值
    x['age'].fillna(x['age'].mean(), inplace=True)  # 给age的缺失值添加平均值,inplace=True修改它本身
    # print(x)
    '''
         pclass        age     sex
    0       1st  29.000000  female
    1       1st   2.000000  female
    2       1st  30.000000    male
    3       1st  25.000000  female
    4       1st   0.916700    male
    ...     ...        ...     ...
    1308    3rd  31.194181    male
    1309    3rd  31.194181    male
    1310    3rd  31.194181    male
    1311    3rd  31.194181  female
    1312    3rd  31.194181    male
    
    [1313 rows x 3 columns]
    '''
    # 分割数据 训练集  测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
    # 特征工程处理  特征->类别 -> one_hot编码  0 1 2
    dic = DictVectorizer(sparse=False)

    x_train = dic.fit_transform(x_train.to_dict(orient='records'))
    x_test = dic.fit_transform(x_test.to_dict(orient='records'))
    # print(x_train)
    '''
        [[12.          0.          1.          0.          1.          0.        ]
     [31.19418104  0.          0.          1.          0.          1.        ]
     [31.19418104  0.          0.          1.          0.          1.        ]
     ...
     [31.19418104  1.          0.          0.          1.          0.        ]
     [ 9.          0.          0.          1.          0.          1.        ]
     [30.          0.          1.          0.          1.          0.        ]]
    '''
    # print(dic.get_feature_names())
    '''['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']'''
    # # 用决策树进行预测
    # dec = DecisionTreeClassifier()
    # dec.fit(x_train, y_train)
    #
    # print("预测的准确率", dec.score(x_test, y_test))
    # '''预测的准确率 0.8206686930091185'''
    # export_graphviz(dec, out_file='./tree.dot',feature_names=['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male'])

    # 用随机森林(超参数的调优)
    rf = RandomForestClassifier()

    param = {'n_estimators': [120, 200, 300, 500, 800, 1200], 'max_depth': [5, 8, 15, 25, 30]}

    gc = GridSearchCV(rf, param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    print('准确率', gc.score(x_test, y_test))  # 准确率 0.8297872340425532
    print("选择的参数模型", gc.best_params_)  # 选择的参数模型 {'max_depth': 5, 'n_estimators': 200}

    return None


if __name__ == '__main__':
    decision()

3.随机森林的优点

1.在当前所有算法中,具有极好的准确率
2.能够有效地运行在大数据集上
3.能够处理具有高维特征的输入样本,而且不需要降维
4.能够评估各个特征在分类问题上的重要性
5.对于缺省值问题也能够获得很好得结果

在这里插入图片描述

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值