多场景下的图表可视化表达

本文利用2016年奥运运动员数据,通过Excel和Python进行数据分析,包括男女运动员身高分布的密度图,综合指标评判运动员身材的面积堆叠图和雷达图,以及运动员CP热度的Gephi可视化。通过多种图表揭示数据背后的故事。
摘要由CSDN通过智能技术生成

2016年奥运运动员数据,数据格式为xlsx,分3个sheet

1 分析男女运动员的身高分布,并制作图表

数据为“奥运运动员数据.xlsx,sheet → 运动员信息”

要求:

① 制作分布密度图

② 计算出男女平均身高,并绘制辅助线表示

提示:

① 可视化制图方法 → sns.distplot()

② 辅助线制图方法 → plt.axvline()

③ 分男女分别筛选数据并制作图表

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore') 

import os
os.chdir('C:\\Users\\yangy\\Desktop\\')
# 创建工作路径

df = pd.read_excel('奥运运动员数据.xlsx',sheet_name=1,header=0)
df_length = len(df)
df_columns = df.columns.tolist()
# 查看数据
# pd.read_excel → 读取excel文件,这里得到的是pandas的dataframe数据格式

data = df[['event','name','gender','height']]
data.dropna(inplace = True)   # 去掉缺失值
data_male = data[data['gender'] == '男']
data_female = data[data['gender'] == '女']
# 筛选数据,按照目标字段筛选
# 提取男女数据

hmean_male = data_male['height'].mean()
hmean_female = data_female['height'].mean()
# 计算男女平均身高

sns.set_style("ticks")
# 图表风格设置
# 风格选择包括:"white", "dark", "whitegrid", "darkgrid", "ticks"

plt.figure(figsize = (8,4))  # 设置作图大小
sns.distplot(data_male['height'],hist = False,kde = True,rug = True,
             rug_kws = {'color':'y','lw':2,'alpha':0.5,'height':0.1} ,   # 设置数据频率分布颜色
             kde_kws={"color": "y", "lw": 1.5, 'linestyle':'--'},        # 设置密度曲线颜色,线宽,标注、线形
             label = 'male_height')
sns.distplot(data_female['height'],h
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值