- 博客(8)
- 收藏
- 关注
原创 linux如何通过SMTP服务器发送QQ邮件
这是《计算机网络——自顶向下方法》里的一个小实验,对理解smtp的交流和电子邮件的报头都很有帮助。是个很值得尝试的实验。
2022-06-27 00:47:22
1347
原创 对解决Visual Studio的 LNK2019 和 LNK1120 错误的一点经验
文章目录对解决Visual Studio的 LNK2019 和 LNK1120 错误的一点经验问题描述尝试分析对解决Visual Studio的 LNK2019 和 LNK1120 错误的一点经验问题描述写了一个 text searching 的代码。该代码设计了数个类,并有一个 interface class 通过指向 base class 的 shared_ptr 通过 dynamic binding 来运行。然而结构设计的不是特别好,这也就导致我遇到了下面的问题:interface clas
2021-08-31 01:09:16
5689
原创 C++ Primer learning notes #3
文章目录C++ learning notesIntroductiontemplatefriend declarationreference collapsing:parameter packetspecializeC++ learning notesIntroductionI write down this succession of notes for the purpose of developing my English ability&habit while learning C++.
2021-08-18 14:29:50
261
原创 C++ Primer learning notes #2
文章目录overloading and type conversionIntroductionbasic conceptoverloading and type conversionIntroductionI write down this succession of notes for the purpose of developing my English ability&habit while learning C++. Therefore I make the whole notes
2021-07-16 01:05:56
256
原创 C++ Primer learning notes #1
文章目录C++ Primer learning notes10. Generic algorithmlambda12. dynamic memoryshared_ptr<>unique_ptr<>weak_ptr<>allocator13. Copy, Assign and Destroyspecific member function to control above three operationscopy constructorcopy-assignment con
2021-07-14 00:11:19
363
原创 周志华《机器学习》 学习笔记(二)线性模型
目录线性回归对数回归几率线性回归线性模型(linear model)试图学得一个线性函数f(x)=w1x1+w2x2+...+wdxd+bf(x)=wTx+bf(\bm{x})=w_{1}x_{1} + w_{2}x_{2} +... +w_{d}x_{d} + b \newlinef(\bm{x}) = \bm{w}^{T}\bm{x} + b f(x)=w1x1+w2x2+...+wdxd+bf(x)=wTx+b其中w=(w1;w2;...;wd)\bm{w} = (w_{1};w
2021-06-15 11:01:26
133
原创 周志华《机器学习》 学习笔记(一) 模型评估与选择
这里写自定义目录标题欠拟合与过拟合评估方法留出法交叉验证法自助法调参与最终模型性能度量错误率与精度查准率与查全率查准率、查全率的性能度量ROC与AUC代价敏感错误率与代价曲线欠拟合与过拟合在机器学习过程中,我们将学习器的实际输出f(x;D)f(x;D)f(x;D) (DDD为训练集)与样本的真实输出 yDy_{D}yD之间的差异称为“误差”。1我们称学习器在训练集上的误差称之为“训练误差”(training error)或“经验误差”(empirical error),在新样本上的误差称为“泛化误差
2021-05-14 19:29:26
445
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人