奈氏准则和香农公式

码元:在数字通信中常常用时间间隔相同的符号来表示一位二进制数字,这样的时间间隔内的信号称为二进制码元。 而这个间隔被称为码元长度。 1码元可以携带nbit的信息量。

码元传输速率,又称为码元速率或传码率。其定义为每秒钟传送码元的数目,单位为"波特",常用符号"Baud"表示,简写为"B"

例题1

假定某信道受奈氏准则限制的最高码元速率为20000码元/秒。如果采用振幅调制,把码

元的振幅划分为16个不同等级来传送,那么可以获得多高的数据率(b/s?

答:C=R*Log216=20000b/s*4=80000b/s

奈氏准则:理想状态下的最高码元传输速率为2w Baud.

         理想带通信道的最高码元传输速率为1w Baud.

香农公式:信道的极限信息传输速率C可表示为:C=W log2(1+S/N) b/s

W为信道带宽(Hz,S为信道内所传信号的平均功率,N为信道内部到高斯噪音功率。

信噪比为S/N

信噪比化为分贝是(dB=10log(S/N)(dB).

表明信道的带宽或信道中的信噪比越大,则信道的极限传输速率就越大。

例题2

假定要用3KHz带宽的电话信道传送64kb/s的数据(无差错传输),试问这个信道应具有多高的信噪比(分别用比值和分贝来表示?这个结果说明什么)

答:以题知,C=64kb/s,W=3k(HZ)

由香农公式C=W log2(1+S/N) b/s,得S/N=2^(64/3)-1

信噪比用分贝表示是10log(S/N)=10log(2^(64/3)-1)=64.2dB

说明是个信噪比要求很高的信源。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值