码元:在数字通信中常常用时间间隔相同的符号来表示一位二进制数字,这样的时间间隔内的信号称为二进制码元。 而这个间隔被称为码元长度。 1码元可以携带nbit的信息量。
码元传输速率,又称为码元速率或传码率。其定义为每秒钟传送码元的数目,单位为"波特",常用符号"Baud"表示,简写为"B"。
例题1:
假定某信道受奈氏准则限制的最高码元速率为20000码元/秒。如果采用振幅调制,把码
元的振幅划分为16个不同等级来传送,那么可以获得多高的数据率(b/s)?
答:C=R*Log2(16)=20000b/s*4=80000b/s
奈氏准则:理想状态下的最高码元传输速率为2w Baud.
理想带通信道的最高码元传输速率为1w Baud.
香农公式:信道的极限信息传输速率C可表示为:C=W log2(1+S/N) b/s
W为信道带宽(Hz),S为信道内所传信号的平均功率,N为信道内部到高斯噪音功率。
信噪比为S/N
信噪比化为分贝是(dB)=10log(S/N)(dB).
表明信道的带宽或信道中的信噪比越大,则信道的极限传输速率就越大。
例题2:
假定要用3KHz带宽的电话信道传送64kb/s的数据(无差错传输),试问这个信道应具有多高的信噪比(分别用比值和分贝来表示?这个结果说明什么)
答:以题知,C=64kb/s,W=3k(HZ)
由香农公式C=W log2(1+S/N) b/s,得S/N=2^(64/3)-1
信噪比用分贝表示是10log(S/N)=10log(2^(64/3)-1)=64.2dB
说明是个信噪比要求很高的信源。