hud1754

题目链接
分块:
O(sqrt(n))时间复杂度过区间寻求最大值

分块题解:

将区间分为sqrt(n) 大小的 ceil(n/sqrt(n))块, 用ma[ ]数组存每一块的最大值,当修改的时候我们把分的块的最大值修改,如果可以修改,查询的时候就先暴力查询边角的最大值,然后在和中间的块即可

AC代码:

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
const int maxn=5e5+5;
const int siz=2e3+5;
int a[maxn],pos[maxn],ma[siz],l[maxn],r[maxn];
void pushup(int p,int w)//改变每一块的最大值
{
    a[p]=w;
    ma[pos[p]]=max(ma[pos[p]],a[p]);
}
int query(int lx,int rx)//询问
{
    int blc=pos[lx];
    int blk=pos[rx];
    int maxx=0;
    if(blc==blk)
    {
        for(int i=lx; i<=rx; i++)
        {
            maxx=max(a[i],maxx);
        }
    }
    else
    {
        for(int i=lx; i<=r[blc]; i++)
        {
            maxx=max(maxx,a[i]);
        }
        for(int i=blc+1; i<=blk-1; i++)
        {
            maxx=max(ma[i],maxx);
        }
        for(int i=l[blk]; i<=rx; i++)
        {
            maxx=max(maxx,a[i]);
        }
    }
    //printf("%d\n",maxx);
    return maxx;

}
int main()
{
    int n,q;
    while(~scanf("%d %d",&n,&q))
    {
        memset(ma,0,sizeof(ma));
        int dis=sqrt(n);
        int num=ceil(n*1.0/dis);
        for(int i=1; i<=num; i++) //求每一块的上下区间
        {
            l[i]=(i-1)*dis;
            r[i]=i*dis;
        }
        r[num]=n;
        for(int i=1; i<=n; i++) //每一块的最大值
        {
            scanf("%d",&a[i]);
            pos[i]=(i-1)/dis+1;
            ma[pos[i]]=max(ma[pos[i]],a[i]);
        }
        while(q--)
        {
            char s[10];
            int lx,rx;
            scanf("%s %d %d",s,&lx,&rx);
            if(s[0]=='Q')
            {
                printf("%d\n",query(lx,rx));
            }
            else
            {
                pushup(lx,rx);
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值