题解:
用
dp[i][j]
代表从i
个数中取j
对数,首先我们对给定的数排一个序,使取答案的时候,局部最优,因为我们有取或者不取两种状态,所以当不取的时候我们当前状态等于上一个状态,dp[i-1][j]
,当取的时候,我们上一个状态为dp[i-2][j-1]
代表i-2个数取j-1对数
加上取的sqr(a[i],a[i-1])
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn =2e3+5;
int dp[maxn][maxn/2];
int a[maxn];
int sqr(int x,int y)
{
return abs(x-y)*abs(x-y);
}
int main()
{
int n,k;
while(~scanf("%d %d",&n,&k))
{
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
memset(dp,0x3f3f3f3f,sizeof(dp));
for(int i=0;i<=n;i++)
{
dp[i][0]=0;
}
sort(a+1,a+1+n);
for(int i=2; i<=n; i++)
{
for(int j=1;j<=i/2&&j<=k; j++)//小优化
{
dp[i][j]=min(dp[i-1][j],dp[i-2][j-1]+sqr(a[i],a[i-1]));
}
}
printf("%d\n",dp[n][k]);
}
}