A − E h A - Eh A−Eh A b Ab Ab A n An An D D D g C d gCd gCd
思路:
显然
1
1
1与任何数的
g
c
d
gcd
gcd为
1
1
1,与任何数的
l
c
m
lcm
lcm都是两数中最大的,呢么直接构造
1
,
x
−
1
1,x-1
1,x−1便是答案。
参考代码:
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
//typedef long long ll;
#define int long long
const int N = 1e3 + 5;
const int maxn = 2e6 + 20;
const int mod = 1e9 + 7;
int inv[maxn], dp[maxn], vis[maxn], dis[maxn];
int fac[maxn];
vector<int> vec;
typedef pair<int, int> p;
int max(int a, int b) { return a > b ? a : b; }
int min(int a, int b) { return a < b ? a : b; }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) { return a * b / gcd(a, b); }
void init()
{
fac[0] = 1;
for (int i = 1; i <= 20; i++)
fac[i] = fac[i - 1] * i;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int q, u, v, w, k, t;
cin>>t;
while(t--)
{
int a,b;
cin>>a;
cout<<1ll<<' '<<a-1ll<<endl;
}
}
B − C o p y C o p y C o p y C o p y C o p y B-CopyCopyCopyCopyCopy B−CopyCopyCopyCopyCopy
思路:
最大长度就是序列中有多少不同的数。
参考代码:
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
//typedef long long ll;
#define int long long
const int N = 1e3 + 5;
const int maxn = 2e6 + 20;
const int mod = 1e9 + 7;
int inv[maxn], dp[maxn], vis[maxn], dis[maxn];
int fac[maxn];
vector<int> vec;
typedef pair<int, int> p;
int max(int a, int b) { return a > b ? a : b; }
int min(int a, int b) { return a < b ? a : b; }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) { return a * b / gcd(a, b); }
void init()
{
fac[0] = 1;
for (int i = 1; i <= 20; i++)
fac[i] = fac[i - 1] * i;
}
map<int, int> mp;
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int q, u, v, w, k, t;
cin >> t;
while (t--)
{
mp.clear();
int n, ans = 0;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> v;
if (!mp[v])
ans++, mp[v] = 1;
}
cout << ans << endl;
}
}
C − E h a b C - Ehab C−Ehab a n d and and P a t h − e t i c Path-etic Path−etic M E X s MEXs MEXs
题意:
让
m
e
x
s
(
u
,
v
)
mexs(u,v)
mexs(u,v)答案尽可能的小,我们如何构造树?
-
m
e
x
s
(
u
,
v
)
mexs(u,v)
mexs(u,v)第一个不存在的非负整数
思路:
说实话这题很简单,就是感觉题意太难搞了,其实对于树,我们想让任意一条链上的值尽可能的小,若树不会退化成链,呢么只要使 0 , 1 , 2 0,1,2 0,1,2,不在一条链上就行,也就是说在叶子节点上的边即可,而叶子节点有一个特点就是出度为 0 0 0,或者度为 1 1 1,我们只要找到3个叶子节点,将3个叶子节点的值赋值为 0 , 1 , 2 0,1,2 0,1,2,其他随意构造就好了,这时这颗树上 m e x s ( u , v ) mexs(u,v) mexs(u,v)最大为 2 2 2。
参考代码:
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
//typedef long long ll;
#define int long long
const int N = 1e3 + 5;
const int maxn = 2e6 + 20;
const int mod = 1e9 + 7;
int inv[maxn], dp[maxn], vis[maxn], dis[maxn];
int fac[maxn];
vector<int> vec;
typedef pair<int, int> p;
int max(int a, int b) { return a > b ? a : b; }
int min(int a, int b) { return a < b ? a : b; }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) { return a * b / gcd(a, b); }
void init()
{
fac[0] = 1;
for (int i = 1; i <= 20; i++)
fac[i] = fac[i - 1] * i;
}
map<int, int> mp;
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int q, u, v, w, k, t;
// cin >> t;
// while (t--)
// {
int n;
q = 0;
cin >> n;
vector<int> a(n + 1, 0);
vector<int> pb(n + 1, 0);
vector<int> ans(n + 1, 0);
for (int i = 0; i <= n - 2; i++)
cin >> u >> v, a[u]++, a[v]++, pb[v] = pb[u]=i;
if (n == 2)
{
cout << 0 << endl;
return 0;
}
for (int i = 1; i <= n; i++)
{
if (a[i] == 1)
ans[pb[i]] = ++q;
if (q == 3)
break;
}
for (int i = 0; i < n - 1; i++)
{
if (ans[i])
cout << ans[i] - 1 << endl;
else
cout << (++q - 1) << endl;
}
//}
}
D − E h a b D - Ehab D−Ehab t h e the the X o r c i s t Xorcist Xorcist
思路:
分几种情况:
1.首先当
u
>
v
u>v
u>v,显然是没有答案的,因为就算可以异或出
u
u
u,异或出
u
u
u的两个值的和肯定大于
v
v
v。
2.当
(
v
−
u
)
(v-u)
(v−u) %
2
2
2
=
=
0
==0
==0,此时我们可以构造长度
3
3
3的答案,答案为
u
u
u ^
x
x
x ^
x
x
x,
x
=
(
v
−
u
)
/
2
x=(v-u)/2
x=(v−u)/2。
3:这里我们需要讨论构造长度为
2
2
2的情况,不分奇偶,为什么把这个放到第三条说,因为他是以第二条为条件引入的。
如果
x
x
x^
y
=
=
u
y==u
y==u,且
x
+
y
=
=
v
x+y==v
x+y==v且
(
x
>
y
)
(x>y)
(x>y),显然我们可以将
x
x
x化成一个二进制串,将
y
y
y从
x
x
x
上给异或掉,呢么我们可以构造
y
=
(
v
−
u
)
/
2
,
x
=
(
v
+
u
)
/
2
y=(v-u)/2,x=(v+u)/2
y=(v−u)/2,x=(v+u)/2,如果这个不满足,则不满足长度为
2
2
2的情况。
4:判断
u
=
=
v
u==v
u==v,若相等且
u
!
=
0
u!=0
u!=0则输出
1
1
1,
u
u
u,反则输出
0
0
0。
参考代码:
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
using namespace std;
//typedef long long ll;
#define int long long
const int N = 1e3 + 5;
const int maxn = 2e6 + 20;
const int mod = 1e9 + 7;
int inv[maxn], dp[maxn], vis[maxn], dis[maxn];
int fac[maxn];
vector<int> vec;
typedef pair<int, int> p;
int max(int a, int b) { return a > b ? a : b; }
int min(int a, int b) { return a < b ? a : b; }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) { return a * b / gcd(a, b); }
int ksm(int a, int b)
{
int ans = 1;
while (b)
{
if (b & 1)
ans *= a;
a *= a;
b >>= 1;
}
return ans;
}
map<int, int> mp;
int a[66], b[66];
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int q, u, v, w, k, t;
// cin >> t;
// while (t--)
// {
cin >> u >> v;
if (u > v)
{
cout << -1 << endl;
return 0;
}
if (u == v)
{
if (u != 0)
{
cout << 1 << endl;
cout << u << endl;
}
else
cout << 0 << endl;
return 0;
}
int x = (v - u) / 2, y = (v + u) / 2;
if ((x ^ y) == u && (x + y == v))
{
cout << 2 << endl;
cout << x << ' ' << y << endl;
}
else
{
if ((v - u) % 2 == 0)
{
cout << 3 << endl;
cout << u << ' ' << (v - u) / 2 << ' ' << (v - u) / 2 << endl;
}
else
cout << -1 << endl;
}
//}
}