对于网上一些博客的讲解,按单向划分方式,我们以数组中最左边的
x
x
x做为划分,然后利用尺取法,小于等于
x
x
x的划分到
x
x
x的左边,大于等于
x
x
x的划分到
x
x
x的右边,然后进行分治划分,这样均摊时间复杂度是
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)的,但是对于最坏的情况(已经排好序),呢么每次划分的区间长度都是按上一次划分的区间长度减 1 的,这样最坏的时间复杂度为
O
(
n
2
)
O(n^2)
O(n2),所以我们需要用另一种方式来划分,从而避免最坏情况的发生,我们划分的值,取中间值,这样就可以避免,区间长度每次都减1的情况了,区间长度的减小是
l
o
g
log
log 级别的,我参考了
A
C
W
i
n
g
ACWing
ACWing上的一种写法,挺不错的,可以借鉴。
参考文章
代码:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 5;
const int mod = 1000000007;
void read(int& v) {
int k = 1;
v = 0;
int c = getchar();
while (c < '0' || c > '9') {
if (c == '-')
k = 0;
c = getchar();
}
while (c >= '0' && c <= '9')
v = (v << 3) + (v << 1) + (c - 48), c = getchar();
if (k == 0)
v = -v;
}
int a[maxn];
void Sort(int a[], int l, int r) {
if (l >= r)
return;
int mid = l + r >> 1;
int t = a[mid], i = l - 1, j = r + 1;
while (i < j) {
do {
i++;
} while (a[i] < t);
do {
j--;
} while (a[j] > t);
if (i < j)
swap(a[i], a[j]);
}
Sort(a, l, j);
Sort(a, j + 1, r);
}
int main() {
int n;
read(n);
for (int i = 1; i <= n; i++) {
read(a[i]);
}
Sort(a, 1, n);
for (int i = 1; i <= n; i++) {
printf("%d%c", a[i], i == n ? '\n' : ' ');
}
}