快速排序

对于网上一些博客的讲解,按单向划分方式,我们以数组中最左边的 x x x做为划分,然后利用尺取法,小于等于 x x x的划分到 x x x的左边,大于等于 x x x的划分到 x x x的右边,然后进行分治划分,这样均摊时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)的,但是对于最坏的情况(已经排好序),呢么每次划分的区间长度都是按上一次划分的区间长度减 1 的,这样最坏的时间复杂度为 O ( n 2 ) O(n^2) O(n2),所以我们需要用另一种方式来划分,从而避免最坏情况的发生,我们划分的值,取中间值,这样就可以避免,区间长度每次都减1的情况了,区间长度的减小是 l o g log log 级别的,我参考了 A C W i n g ACWing ACWing上的一种写法,挺不错的,可以借鉴。
参考文章

代码:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 5;
const int mod = 1000000007;
void read(int& v) {
  int k = 1;
  v = 0;
  int c = getchar();
  while (c < '0' || c > '9') {
    if (c == '-')
      k = 0;
    c = getchar();
  }
  while (c >= '0' && c <= '9')
    v = (v << 3) + (v << 1) + (c - 48), c = getchar();
  if (k == 0)
    v = -v;
}
int a[maxn];
void Sort(int a[], int l, int r) {
  if (l >= r)
    return;
  int mid = l + r >> 1;
  int t = a[mid], i = l - 1, j = r + 1;
  while (i < j) {
    do {
      i++;
    } while (a[i] < t);
    do {
      j--;
    } while (a[j] > t);
    if (i < j)
      swap(a[i], a[j]);
  }
  Sort(a, l, j);
  Sort(a, j + 1, r);
}
int main() {
  int n;
  read(n);
  for (int i = 1; i <= n; i++) {
    read(a[i]);
  }
  Sort(a, 1, n);
  for (int i = 1; i <= n; i++) {
    printf("%d%c", a[i], i == n ? '\n' : ' ');
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值