一周ML算法实践
每天拿出一些时间,系统的总结用机器学习算法解决实际问题的基本过程. 也适合作为零基础入门教程.
yanhe156
这个作者很懒,什么都没留下…
展开
-
一周算法实践day4: 模型调优
1 任务 2 完整代码及注释 # -*- coding: utf-8 -*- from __future__ import print_function import pandas as pd import numpy as np import matplotlib.pyplot as plt # 引入要用到的评价函数 from sklearn.metrics import precision_...原创 2018-12-15 18:58:05 · 345 阅读 · 0 评论 -
一周算法实践day3: 模型评估
1 任务 记录7个模型(逻辑回归、SVM、决策树、随机森林、GBDT、XGBoost和LightGBM)关于accuracy、precision,recall和F1-score、auc值的评分表格,并画出ROC曲线。 2 遇到的问题 对ROC曲线和AUC值的解释 3 不同模型的多种指标 模型 Accuracy Precision Recall F1-Score ROC_AUC ...原创 2018-12-13 18:44:30 · 575 阅读 · 0 评论 -
一周算法实践day2:集成模型构建
1任务 构建随机森林、GBDT、XGBoost和LightGBM这4个模型,评分方式任意。 2 遇到的问题 xgboost 安装gpu版本时遇到的问题 3 完整代码和注释 from __future__ import print_function from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble ...原创 2018-12-11 16:42:08 · 338 阅读 · 0 评论 -
一周算法实践day1: 模型构建
1基本使用要点 csv是常用的数据存储格式,尤其是一些数据竞赛,pandas可以方便的读写csv文件 data_all = pd.read_csv('./data_all.csv') data_all.to_csv('./submission.csv', index=False) sklearn中各种算法的调用方法都是差不多的,基本上有以下四个函数: model = ..() # 初始...原创 2018-12-08 23:31:30 · 294 阅读 · 0 评论