复旦大学nlp实验室上手教程之文本分类

文本分类

原项目地址:https://github.com/FudanNLP/nlp-beginner
感谢教师:邱锡鹏 微博:@邱锡鹏

1 文本分类任务简介

​ 在有监督学习中,需要提供一组有类别标记的样本用来学习模型以及检验模型的好 坏。这组样本集合就称为数据集。数据集用 X X X 表示, X = ( x 1 , y 1 ) , ⋅ ⋅ ⋅ , ( x N , y N ) X = {(x^1 , y^1 ), · · · , (x^N , y^N )} X=(x1,y1),,(xN,yN),N 为 样本个数。 y i y^i yi 为样本实例 x i x^i xi 的类别标记。在自然语言处理中,数据集也经常称为语料库。

其中 x i x^i xi的为一组文本, y i y^i yi可以是一组标签如词性,也可以是一个标签如文本的类别
x i = ( w 1 . . . w t . . . w T ) y i = ( p 1 . . . p t . . . p T ) x^i = (w_1...w_t...w_T)\\ y^i=(p_1...p_t...p_T) xi=(w1...wt...wT)yi=(p1...pt...pT)
使用机器学习方法-即找到这样一个映射f, 使得 x i − > y i x^{i}->y^{i} xi>yi

2 向量化

​ 在机器学习算法中,样本实例一般是以连续变量或离散变量的形式存在的(也称为 特征),而在自然语言处理中一般都是文字形式。因此,在进行学习模型之前,需要进行 特征提取,将样本的原始表示转换为特征向量。

​ 在机器学习中,为了更好地表示样本的属性,一般将样本表示成代数形式,称为样 本的特征,我们用 ϕ ( x ) \phi(x) ϕ(x)。样本特征可以是一维或多维向量, ϕ ( x ) ∈ R m , m \phi(x) ∈ R_m,m ϕ(x)Rm,m是向量维数。
ϕ ( x ) = ( ϕ 1 ( x ) ϕ 2 ( x ) . . ϕ m ( x ) ) \phi(x) = \left( \begin{array} {ccc} \phi_1(x) \\ \phi_2 (x) \\ .\\ .\\ \phi_m(x) \end{array} \right) ϕ(x)=ϕ1(x)ϕ2(x)..ϕm(x)
​ 自然语言处理中,数据都是以字符形式存在的。样本的原始表示一般是字符串序 列。为了便于使用机器学习方法,首先要把样本表示为向量形式。下面我们介绍几种常 用的特征表示方法。自然语言处理的,在构造了样本和样本集合之后,为了和后面的机 器学习算法相结合,我们将样本x 转变成向量φ(x)。在将字符表示转换成向量表示的过 程中需要很多中间步骤,我们把这些中间步骤都成为数据处理,并且尽可能的模块化。

2.1 词袋模型

​ 一种简单的方法是简单假设文本(如一个句子或一个文档)是由字、词组成的无序 多重集合,不考虑语法甚至词序。这就是在自然语言处理和信息检索中常用的词袋模型,词袋模型可以看成一种以词为基本单位的向量空间模型(Vector Space Model, VSM)。具体可见本课程chap3的slide

2.2 N 元特征

​ 词袋模型在需要深层分析的场合就会显得太过简化了。例如在语义分析里,“你打了 我”和“我打了你”,意思是相反的,但用词袋模型表示后,这两句话是向量表示的等价 的,这显然是不合理的。

​ N 元特征(N-gram 特征),顾名思义,就是由 N 个字或词组成的字符串,单元可以 是字或词。这里N是大于等于1的任意整数。如果N 为2,就叫做二元特征,如果N为 3,就叫做三元特征以此类推。

​ N 元特征可以看出是对词袋模型的一种改进方法。与 N 元特征相关的概念是 N 元语法模型。以中文句子“机器学习算法”为例,以字为基本单位的二元特征集合为:{机器,器 学,学习,习算,算法}。集合中每一项都是由二个相邻的字组成的的子串,长度为 2。这 些子串可以是有意义的词(例如:“学习”、“算法”),也可以是无任何意义的字符串(例 如:“器学”,“习算”)。但是这些无意义的子串也有可能在分类中起到很关键的作用。一 个长度为L的句子,可以提取出L − 1个二元特征。

​ 有了 N 元特征集合,就可以利用词袋模型将文本表示为向量形式。随着 N 的增加, 可以抽取的特征就会越多,特征空间也会呈指数增加。这些高阶的特征出现的频率也会相对较低,对分类不但没有太多帮助,还会直接影响着后续处理的效率与复杂度。因此在一般的文本分类任务中,N 取 3 就足够了,并且同时也使用一元和二元特征,防止出现过拟合。

3 文本分类

​ 经过特征抽取后,一个样本可以表示为 k 维特征空间中的一个点。为了对这个特征 空间中的点进行区分,就需要寻找一些超平面来将这个特征空间分为一些互不重叠的子 区域,使得不同类别的点分布在不同的子区域中,这些超平面就成为判别界面。

​ 为了定义这些用来进行空间分割的超平面,就需要引入判别函数的概念。假设变量 z ∈ Rm为特征空间中的点,这个超平面由所有满足函数f(z) = 0的点组成。这里的f(z) 就称为判别函数。

​ 有了判别函数,分类就变得很简单,就是看一个样本在特征空间中位于哪个区域, 从而确定这个样本的类别。 判别函数的形式多种多样,在自然语言处理中,最为常用的判别函数为线性函数。

3.1 二分类问题

y ^ = s i g n ( ( f ( z ) ) ) = s i g n ( θ T z + θ 0 ) \hat y =sign((f(z))) = sign(\theta^Tz+\theta_0) y^=sign((f(z)))=sign(θTz+θ0)

sign为符号函数,取判别函数f(z)的正负号,为方便,简写判别函数为
f ( z ) = θ T z + θ 0 = ∑ i = 1 k θ i z i + θ 0 = ∑ i = 0 k = θ ^ T z ^ f(z) = \theta^Tz+\theta_0 = \sum_{i=1}^{k}\theta_iz_i + \theta_0 = \sum_{i=0}^{k} = \hat \theta^T \hat z f(z)θTz+θ0=i=1kθizi+θ0=i=0k=θ^Tz^
其中 z 0 = 1 z_0=1 z0=1, θ ^ , z ^ \hat\theta,\hat z θ^,z^分别称为增广权重向量和增光特征向量。
z ^ = ( 1 z 1 . . z k ) = ( 1 z ) \hat z = \left( \begin{array} {ccc} 1 \\ z_1\\ .\\ .\\ z_k \end{array} \right) = \left( \begin{array}{ccc} 1 \\ \\ z \\ \\ \\ \end{array} \right) z^=1z1..zk=1z

θ ^ = ( θ 0 θ 1 . . θ k ) = ( θ 0 θ ) \hat \theta = \left( \begin{array} {ccc} \theta_0 \\ \theta_1\\ .\\ .\\ \theta_k \end{array} \right) = \left( \begin{array}{ccc} \theta_0 \\ \\ \theta \\ \\ \\ \end{array} \right) θ^=θ0θ1..θk=θ0θ

后面的分类器描述中,我们都采用简化的表示方法,并直接用 θ , z θ , z θ,z 来表示增广权重向量和增广特征向量

3.2 多分类问题

​ 对于 C 类分类问题,需要定义 C 个判别函数。但是这种表示一般适用于类别 y 为离散变量的情况。在自然语言处理的很 多学习任务,类别 y 可以是更复杂的结构,比如多标签、层次化以及结构化等形式。为了更好的描述这些情况,可采用如下形式:
y ^ = a r g m a x y f ( ϕ ( x , y ) , θ ) 式 3.2 \hat y = \mathop{argmax}_yf(\phi(x,y),\theta) \hspace{5cm} 式3.2 y^=argmaxyf(ϕ(x,y),θ)3.2
这里 ϕ ( x , y ) \phi(x,y) ϕ(x,y)是包含了样本x和类别y混合信息的特征向量, θ = [ θ 1 ; θ 2 … ; θ C ] \theta=[\theta_1;\theta_2…;\theta_C] θ=[θ1;θ2;θC]

例子:
KaTeX parse error: Unknown column alignment: 1 at position 37: … \begin{array}{1̲1} 1 & \textrm…

KaTeX parse error: Unknown column alignment: 1 at position 36: … \begin{array}{1̲1} 1 & \textrm…

其中 x = w 1 . . . w ∣ V ∣ x=w_1...w_{|V|} x=w1...wV ,是个字典大小的向量。

总之:
ϕ ( x , y ) = ( ϕ 1 ( x , y ) ϕ 2 ( x , y ) . . ϕ ∣ V ∣ ∗ k ( x , y ) ) = ϕ ( x ) ⊗ ϕ ( y ) \phi(x,y) = \left( \begin{array} {ccc} \phi_1(x,y) \\ \phi_2(x,y) \\.\\.\\ \phi_{|V|*k}(x,y) \end{array} \right)=\phi(x) \otimes \phi(y) ϕ(x,y)=ϕ1(x,y)ϕ2(x,y)..ϕVk(x,y)=ϕ(x)ϕ(y)
其中:
KaTeX parse error: Unknown column alignment: 1 at position 35: … \begin{array}{1̲1} 1 & \textrm…
c k c_k ck是词典中第k个词。
KaTeX parse error: Unknown column alignment: 1 at position 35: … \begin{array}{1̲1} 1 & \textrm…
l a b e l m label_m labelm表示第m个标签。

再论式3.2:

ϕ ( x , y ) \phi(x,y) ϕ(x,y) 为特征表示, f ( ϕ , θ ) f(\phi,\theta) f(ϕ,θ)为模型,一般在文本分类中为线性模型(由于我们可以构建足够复杂的特征表示,在高维空间中总是线性可分的),argmax 为解码过程,即寻求y解的过程,对于分类问题,看得分取高分即可。机器学习要学的参数是 θ \theta θ

4 词性标注

y y y的输出值可能不仅仅是分类值,可能也是一个序列值,如词性标注问题-输入一个序列,输出也是一个序列:

X:(S) I give you a book (E)

y: P V P D N

其中P为代词,V为动词,D为冠词,N为名词,(S)为开始符,(E)为结束符

  1. 初级处理方法:

如(I, P),(give, V),(you,P),(a,D),(book,N) 构建一个多分类器

  1. 进阶处理方法:

由于一个词的词性与其上下文相关,可以构建大小为n窗口,如n为1

可以增加以下:

((S) I give, N), (give you a, P)…

通过构建一个特征更多的多分类器。

但是仍然存在一个问题:相近词的词性约束缺失。

  1. CRF(条件随机场):

ϕ ( x , y ) = ∑ i = 1 L θ i T ϕ ( x ⃗ , y i ) + ∑ i = 2 L θ i T ϕ ∗ ( x ⃗ , y i − 1 , y i ) \phi(x,y) = \sum_{i=1}^{L}\theta^T_i\phi(\vec{x},y_i)+\sum_{i=2}^{L}\theta_i^T\phi^{*}(\vec{x},y_{i-1},y_i) ϕ(x,y)=i=1LθiTϕ(x ,yi)+i=2LθiTϕ(x ,yi1,yi)
L为序列化输出y的长度。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kF3vXroS-1592880015150)(CRF.png)]

其中 ϕ ( x ⃗ , y ) \phi(\vec x,y) ϕ(x ,y)中特征抽取方式如下-假定窗口为1:
KaTeX parse error: Unknown column alignment: 1 at position 39: … \begin{array}{1̲1} 1 & if\ x_{…
其中 ϕ ∗ ( x ⃗ , y i − 1 , y i ) \phi^*(\vec x,y_{i-1},y_{i}) ϕ(x ,yi1,yi)特征抽取方式如下:
KaTeX parse error: Unknown column alignment: 1 at position 78: … \begin{array}{1̲1} 1 & if\ y_{…

5 感知器训练

5.1训练算法

输入:训练集: ( x i , y i ) , i = 1 , ⋅ ⋅ ⋅ , N (x_i,y_i),i=1,···,N (xi,yi),i=1,,N,最大迭代次数:T
输出: θ k θ_k θk

θ 0 = 0 ; θ_0=0; θ0=0;
k = 1 ; k=1; k=1;
f o r   t = 1 ⋅ ⋅ ⋅ T   d o for\ t=1···T\ do for t=1T do

s h u f f l e ​ shuffle​ shuffle

f o r   i = 1 ⋅ ⋅ ⋅ N   d o for\ i = 1 · · · N\ do for i=1N do

​ 选取一个样本 (xi , yi );

​ 预测类别 $\hat y_t $;

i f   y ^ t = y t   t h e n if\ \hat y_t = y_t\ then if y^t=yt then

θ k = θ k − 1 + ( φ ( x t , y t ) − φ ( x t , y ^ t ) ) ; θ_k =θ_{k−1}+(φ(x_t,y_t)−φ(x_t,\hat y_t)); θk=θk1+(φ(xt,yt)φ(xt,y^t));

k = k + 1 ; k=k+1; k=k+1;

e n d end end

e n d end end

e n d end end

r e t u r n   θ T ; return\ θ_T ; return θT;

算法要点:

  1. 单个样本进行学习
  2. 被动学习,只有预测值和实际值不同时才更新
  3. 每次一轮迭代前进行shuffle
  4. early-stop避免过拟合,将集合分成训练集,开发集和测试集。
5.2 感知器收敛性
5.2.1 定义

多类线性可分: 对于训练集 D = ( x i , y i ) i = 1 n D = {(x_i,y_i)}_{i=1}^{n} D=(xi,yi)i=1n,如果存在一个正的常数 γ ( γ > 0 ) γ(γ > 0) γ(γ>0)和权重向量 θ ∗ θ^∗ θ,并且 ∥ θ ∗ ∥ = 1 ∥θ^∗ ∥ = 1 θ=1,对所有i都满足 ⟨ θ ∗ , φ ( x i , y i ) ⟩ − ⟨ θ ∗ , φ ( x i , y ) ⟩ > γ , y ≠ y i ( φ ( x i , y i ) ∈ R m ⟨θ^∗, φ(x_i, y_i)⟩ − ⟨θ^∗, φ(x_i, y)⟩ > γ, y \ne y_i (φ(x_i, y_i) ∈ R^m θ,φ(xi,yi)θ,φ(xi,y)>γ,y=yi(φ(xi,yi)Rm 为样本$x_i 的 增 广 特 征 向 量 ) , 那 么 训 练 集 的增 广特征向量),那么训练集 广),D$ 是线性可分的。

5.2.2 定理

对于任何线性可分的训练集 D = ( x i , y i ) i = 1 n ​ D = {(x_i,y_i)}_{i=1}^{n}​ D=(xi,yi)i=1n,假设 R 是所有样本中错误类别和真实类别在特征空间 φ(x, y) 最远的距离。

R = m a x i m a x z ≠ y i ∥ φ ( x i , y i ) − φ ( x i , z ) ∥ R =\mathop {max}_imax_{z\ne y_i}∥φ(x_i,y_i)−φ(x_i,z)∥ R=maximaxz=yiφ(xi,yi)φ(xi,z)

那么在5.1感知器学习算法中,总共的预测错误次数 K < R 2 γ 2 K <\frac{R^2} {γ^2} K<γ2R2

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值