TranE论文解读
Trans系列的主题是基于翻译模型的知识表示学习,主要用来解决知识表示和推理的问题。本文主要介绍TransE和数据集Wordnet、Freebase等。
表示学习:主要面向知识图谱中实体和关系进行表示学习,一般使用建模方法将实体和向量表示在低维稠密向量空间中,然后计算并推理,主要的应用任务有三元组提取(triplet classification)和链接预测(link prediction)。
Trans系列的源头应该就是这篇介绍的与2013年被提出的TransE模型,之后针对TransE模型的改进和补充也成为了近年来知识表示的研究热点。
TransE,NIPS2013,Translating embeddings for modeling multi-relational data。
TransH,AAAI2014,Knowledge graph embedding by translating on hyperplanes。

本文深入解读2013年的NIPS论文《Translating Embeddings for Modeling Multi-relational Data》,介绍了TransE模型在知识图谱表示学习中的应用。TransE旨在将实体和关系映射到低维向量空间,解决多关系数据表示问题。通过对Wordnet和Freebase数据集的实验,展示了TransE在链接预测任务上的优秀性能,并与其他模型进行了对比。该模型以最少参数实现高效表示,适用于大规模知识库。
最低0.47元/天 解锁文章
4651

被折叠的 条评论
为什么被折叠?



