论文解读:NSGA-II, EFR, EFR-RR

论文解读:NSGA-II, EFR, EFR-RR


本文主要回顾三种算法(NSGA-II, EFR, EFR-RR)的动机以及他们之间的差异。

  1. EFR是基于NSGA-II框架提出的集成适应度排序算法。二者之间的差异主要在环境选择上。

    具体来说,在每一代中,NSGA-II对合并种群 R = P U Q R = P U Q R=PUQ 中的每个个体执行非支配排序以产生所有分类排序子集 F = ( F 1 , F 2 , ⋯   ) F = (F_1, F_2, \cdots) F=(F1,F2,)。然后,根据需要计算某个分类排序子集中所有个体的聚集距离,并建立偏序集。接下来从偏序集依次选取个体进入 P t + 1 P_{t+1} Pt+1

    摆渡给出偏序集的定义:它是数学中,特别是序理论中,指配备了部分排序关系的集合。这个理论将排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。

    对应Matlab代码实现为:

    %% Select the solutions in the last front based on their crowding distances
    Last     = find(FrontNo==MaxFNo);
    [~,Rank] = sort(CrowdDis(Last),'descend');
    Next(Last(Rank(1:N-sum(Next)))) = true;
    

    也就是说,偏序关系只可能在最后一个分类子集FLast上被使用到。因为按照非支配关系可知, F L a s t F_{Last} FLast之前的分类子集中的所有个体均被选入了新群体,但只有 F L a s t F_{Last} FLast中的一部分个体被选入新群体,此时称 F L a s t F_{Last} FLast临界层分类子集

  2. EFR采用了类似NSGA-II的分层框架。

    首先,初始化父代种群,以及全局排序号 R g R_g Rg。 执行以下循环直到算法结束:
    算法根据得到的 R g R_g Rg进行选择(binary tournament selection),并执行交叉(SBX)、变异(polynomial mutation)等操作产生子代种群 Q t Q_t Qt。合并父代和子代种群 R t = P t ⋃ Q t R_t = P_t \bigcup Q_t Rt=PtQt

    然后,采用一组更具一般性的适应度函数 F 1 , F 2 , ⋯   , F K \mathcal {F}_1, \mathcal {F}_2, \cdots, \mathcal {F}_K F1,F2,,FK将个体 x x x m m m个目标上的函数值转换为一组适应度值( K K K维向量)。其目的是通过整合多个由不同的简单排序器(适应度函数)产生的排序结果来提高排序的可靠性和合理性。

    选择适应度函数时需要考虑这样一个问题: 当计算 x x x的适应度 F i ( x ) \mathcal {F}_i(x) Fi(x)时,应该独立于其它解。否则 F i ( x ) \mathcal {F}_i(x) Fi(x)对种群的更新毫无意义。 因此需要额外手段来分配适应度值。 文章作者采用了三个适应度函数: L p   n o r m L^p~norm Lp norm T c h e b y c h e f f   F u n c t i o n Tchebycheff~Function Tchebycheff Function 以及 P B I PBI PBI

    进一步地,需要为所有个体分配全局排序号 R g R_g Rg。具体来说,这类似于AR和MR过程,即为每个解 x x x产生 K K K个序号位,由向量 R ( x ) = ( ( r 1 ( x ) , r 2 ( x ) , ⋯   , r K ( x ) ) ) T R(x)=((r_1(x), r_2(x), \cdots, r_K(x)))^T R(x)=((r1(x),r2(x),,rK(x)))T表示。其中, r j ( x ) r_j(x) rj(x)表示 x x x对应于适应度 F j \mathcal {F}_j Fj的排序号。当全部解 R ( x ) R(x) R(x)计算完成之后,可通过集成排序机制(如, A R AR AR M R MR MR以及作者提出的 L R LR LR)为每个解 x x x分配 R g R_g Rg。由于一些解可能具有相同的 R g R_g Rg。所以,根据 R g R_g Rg可以将种群分为不同的子集( { F 1 , F 2 , …   } \{F_1, F_2, \dots \} {F1,F2,}(这类似于NSGA-II中前沿的概念)。其中 F 1 F_1 F1为第一层,具有最小的 R g R_g Rg值,依次类推。同一子集 F i F_i Fi中的所有解个体都具有相同的第 i i i个最小 R g R_g Rg值。(关于 A R AR AR M R MR MR排序算法略)。 在种群更新时,将子集依次合并到新种群中,具体过程如下: 在这里插入图片描述
    这里, S o r t ( F i ) Sort(F_i) Sort(Fi)采用随机排序。

  3. EFR-RR在EFR的基础上,分析了影响解分布的另一个重要因素,距离。
    首先说一说该优化机制的动机。高维空间中(Many-objective),由于等值线的存在,仅仅依靠权重向量难以维持解的多样性。为此,需要借助解到权重向量的垂直距离来维持演化过程中解的多样性,从而获得具有良好分布的帕累托前沿(Pareto front)。该思想具有不同的实现形式,例如,基于标准的MOEA/D和EFR算法,分别提出了MOEA/D-DU和EFR-RR。这里只介绍后者。

    假设解 x \textbf{x} x具有 m m m个目标向量 f ( x ) = ( f 1 ( x ) , f 2 ( x ) , … , f m ( x ) ) \textbf{f}(\textbf{x})=(f_1(\textbf{x}), f_2(\textbf{x}), \dots, f_m(\textbf{x})) f(x)=(f1(x),f2(x),,fm(x)),直线 L L L为穿过参考点 z ∗ \textbf{z}^* z且以权重向量 λ j \lambda_j λj为方向的直线。定义 x \textbf{x} x λ j \lambda_j λj的距离 D j , 2 ( x ) D_{j,2}(x) Dj,2(x)为:
    D j , 2 ( x ) = ∥ f ( x ) − z ∗ − D j , 1 ( x ) ( λ j / ∥ λ j ∥ ) ∥ D_{j,2}(\textbf{x}) = \parallel \textbf{f}(\textbf{x})- \textbf{z}^*-D_{j,1}(\textbf{x})(\lambda_j / \parallel \lambda_j\parallel)\parallel Dj,2(x)=f(x)zDj,1(x)(λj/λj)
    其中, D j , 1 ( x ) D_{j,1}(\textbf{x}) Dj,1(x) z ∗ \textbf{z}^{*} z 与交点 u \textbf{u} u 之间的距离
    D j , 1 ( x ) = ∥ ( f ( x ) − z ∗ ) T λ j ∥ / ∥ λ j ∥ D_{j,1}(\textbf{x}) = \parallel (\textbf{f}(\textbf{x})- \textbf{z}^*)^T \lambda_j \parallel / \parallel \lambda_j \parallel Dj,1(x)=(f(x)z)Tλj/λj
    下图是二维空间中解到权重向量垂直距离的示意图:
    在这里插入图片描述
    理想的情况是,由Tchebycheff函数得到最优解之后,也能够同时获得最理想的多样性。但是EFR并非如此。由其产生的最终解通常集中在最优解附近,而不能保证种群的多样性。为了解决这个问题,在EFR-RR在原始EFR算法中使用了排序限制(Ranking Restriction)方案:
    只允许解 x \textbf{x} x在目标空间中相应权重向量接近的适应度函数上排序。换句话说,并非所有权重向量都参与适应度的计算,而是目标空间中那些与当前解相近的权重向量组成的子集,记为 B ( x ) B(\textbf{x}) B(x)。其中包含 N N N个权重向量中在垂直距离上与 x \textbf{x} x最接近的 K ( K ≪ N ) K(K\ll N) K(KN)个权重向量的下标,即:参与排序的适应度为 F j \mathcal {F}_j Fj,其中 j ∈ B ( x ) j\in B(\textbf{x}) jB(x)。相应地,EFR-RR算法中解 x \textbf{x} x的全局序号为: R g ( x ) = min  r j ( x ) ,   j ∈ B ( x ) R_g(\textbf{x}) = \text{min}~r_j(\textbf{x}), ~j\in B(\textbf{x}) Rg(x)=min rj(x), jB(x)
    在这里插入图片描述
    参考文献:

  4. (NSGA-Ⅱ)-2002-A fast and elitist multiobjective genetic algorithm.

  5. (EFR)-2014-Evolutionary Many-Objective Optimization Using Ensemble Fitness Ranking.

  6. (EFR-RR)-2016-Balancing convergence and diversity in decomposition-based many-objective optimizers

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值