EulerOS(NPU)安装llamafactory

一、系统环境

cat /etc/os-release
NAME="EulerOS"
VERSION="2.0 (SP10)"
ID="euleros"
VERSION_ID="2.0"
PRETTY_NAME="EulerOS 2.0 (SP10)"
ANSI_COLOR="0;31"

uname -m
aarch64

npu-smi info
# 8卡 ...

二、版本选择

  • CANN 8.2.RC1
  • torch 2.6.0
  • torch-npu 2.6.0
    在这里插入图片描述

三、安装CANN 8.2.RC1

1. 官方下载地址

在这里插入图片描述

  • wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%208.2.RC1/Ascend-cann-toolkit_8.2.RC1_linux-aarch64.run
  • wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%208.2.RC1/Ascend-cann-kernels-910b_8.2.RC1_linux-aarch64.run

2、root用户安装CANN方便所有用户使用这个版本

sh Ascend-cann-toolkit_8.2.RC1_linux-aarch64.run --check
sh Ascend-cann-toolkit_8.2.RC1_linux-aarch64.run --install
sh Ascend-cann-kernels-910b_8.2.RC1_linux-aarch64.run --check
sh Ascend-cann-kernels-910b_8.2.RC1_linux-aarch64.run --install

四、安装llamafactory

1. 创建新用户llamafactory

useradd -m -s /bin/bash llamafactory
passwd llamafactory
usermod -aG HwHiAiUser llamafactory

visudo # /usr/local/Ascend权限
    llamafactory ALL=(ALL) NOPASSWD:ALL
su - llamafactory

2. 安装conda

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda3
vim ~/.bashrc
	export PATH=$HOME/miniconda3/bin:$PATH
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
conda init
conda create -n lf310 python=3.10 -y
conda activate lf310

3. 配置环境变量cann多个版本并存(vim ~/.bashrc

# cp /usr/local/Ascend/ascend-toolkit/set_env.sh
export LD_LIBRARY_PATH=/usr/local/Ascend/driver/lib64:/usr/local/Ascend/driver/lib64/common:/usr/local/Ascend/driver/lib64/driver
export ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/8.2.RC1
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling/lib/linux/$(arch):$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/tools/aml/lib64:${ASCEND_TOOLKIT_HOME}/tools/aml/lib64/plugin:$LD_LIBRARY_PATH
export PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:$PYTHONPATH
export PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${ASCEND_TOOLKIT_HOME}/tools/ccec_compiler/bin:$PATH
export ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME}
export ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
export TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit
export ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME}

4. gcc版本过低升级到8.4.0

  • gcc版本
  • 下载 wget https://mirrors.tuna.tsinghua.edu.cn/gnu/gcc/gcc-8.4.0/gcc-8.4.0.tar.gz
  • 解压 tar zxvf gcc-8.4.0.tar.gz
  • 下载依赖 ./contrib/download_prerequisites
  • 创建编译文件夹 mkdir buildgcc && cd buildgcc
  • 编译安装 安装到/path 目录下 不要覆盖系统的gcc 否则安装其他软件会报permission 错误 需要指定 需要指定 CC make CC=/path/gcc/bin/gcc
    sudo mkdir -p /path
    sudo chown -R llamafactory:llamafactory /path
    # /path 目录下 方便其他用户该版本
    ../configure -enable-checking=release -enable-languages=c,c++,fortran -disable-multilib --prefix=/path/gcc
    #make # 速度太慢改为并行编译
    make -j$(nproc) # 大概1~2h
    make install # 这个很快
    
  • 配置环境变量
    #gcc
    export gcchome=/path/gcc
    export PATH=$gcchome/bin:$PATH
    export PATH=$gcchome/lib:$PATH
    export PATH=$gcchome/lib64:$PATH
    export LD_LIBRARY_PATH=$gcchome/lib:$LD_LIBRARY_PATH
    export LD_LIBRARY_PATH=$gcchome/lib64:$LD_LIBRARY_PATH
    export LIBRARY_PATH=$gcchome/lib:$LIBRARY_PATH
    export LIBRARY_PATH=$gcchome/lib64:$LIBRARY_PATH
    export PATH=$gcchome/include:$PATH
    export LD_LIBRARY_PATH=$gcchome/include:$LD_LIBRARY_PATH
    export LIBRARY_PATH=$gcchome/include:$LIBRARY_PATH
    

5、安装llamafactory

也可以参考llamafactory微调

conda activate lf310
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -e ".[torch-npu,metrics]" -i https://pypi.tuna.tsinghua.edu.cn/simple
pip show torch # 升级到2.6.0
pip uninstall torch torch-npu torchvision
pip install torch-npu==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

it&s me

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值