小学六年级奥数竞赛题知识点
牛吃草问题
在小学这类问题常用到四个基本公式,分别是:
(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
例题解析
小学六年级奥数竞赛题例1:
一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?
摘录条件:
27头 6天 原有草+6天生长草
23头 9天 原有草+9天生长草
21头 ?天 原有草+?天生长草
解答这类问题关键是要抓住牧场青草总量的变化。
设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。为什么会多出这45呢?
这是第二次比第一次多的那(9-6)=3天生长出来的,
所以每天生长的青草为45÷3=15
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。
由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?
(27-15)×6=72
那么:第一次吃草量27×6=162第二次吃草量23×9=207
每天生长草量45÷3=15
原有草量(27-15)×6=72或162-15×6=72
21头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)
小学六年级奥数竞赛题例2:
一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。在东升牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草
【解析】
设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析
12头牛 25天 12×25=300 :
原有草量+25天自然减少的草量
24头牛 10天 24×10=240 :
原有草量+10天自然减少的草量
从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;
那么15公顷的牧场上原有草量:300-25×4=200;
则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.
20天里,共草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。