Trapping Rain Water
问题描述
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
中文介绍
看到这道题,觉着很有意思,看一下图的话会很容易理解这道题在讲什么,就是给定的数组代表的是高低不同的柱子,如果下雨以后最多能保存多少水。就我个人而言,如果从左到右计算的话,需要保存左边的高度,如果出现了一个凹陷处,就把计算这部分保存的水量,然后丢掉没用的数据。这里面有一个先后的问题,所以就考虑采用stack进行保存。
然后具体看一下保存的过程。(以题目给定的数据为例子)
最上面一行代表的是数组元素,下面的代表的是stack中保存的数据,靠近标题栏的一行为栈底。
0 | 1 | 0 | 2 | 1 | 0 | 1 | 3 | 2 | 1 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | ||||
0 | 1 | 1 |
上面的斜体代表的是新添加的元素。
因为另外需要计算水量,也就是高度对应的数组位置,就另外增加了一个stack来保存对应的index。
对应代码
class Solution42 {
public static void main(String[] args){
Solution42 solution42 = new Solution42();
int[] a = {6,4,2,0,3,2,0,3,1,4,5,3,2,7,5,3,0,1,2,1,3,4,6,8,1,3};
System.out.println(solution42.trap(a));
}
public int trap(int[] height) {
int result =0;
Stack<Integer> stack2 = new Stack();
Stack<Integer> stack = new Stack();
for(int i=0;i<height.length;i++){
if(stack.isEmpty()||height[i]<stack.peek()){
stack.add(height[i]);
stack2.add(i);
}else {
int preH =0;
int r =0;
while(!stack.isEmpty()&&height[i]>=stack.peek()){
int h = stack.pop();
r += (h-preH)*(i-stack2.pop()-1);
preH = h;
}
if(!stack.isEmpty()&&height[i]>preH){
r+=(height[i]-preH)*(i-stack2.peek()-1);
}
stack.add(height[i]);
stack2.add(i);
result+=r;
}
}
return result;
}
}
其他解法
采用上面的算法虽然通过了测试,但是排名只在后百分之10;然后就看了一下其他人的解法。
参考的页面
https://leetcode.com/problems/trapping-rain-water/solution/
Brute force [Accepted] 暴力破解
Algorithm
暴力破解的思想就是从左边开始遍历,然后寻找元素左右两边的最大值
然后用左右两边高度最大值的较小者减去当前的高度,
把这些高度累加起来,就是最后的结果。
官网提供的代码
c++
int trap(vector<int>& height)
{
int ans = 0;
int size = height.size();
for (int i = 1; i < size - 1; i++) {
int max_left = 0, max_right = 0;
for (int j = i; j >= 0; j--) { //Search the left part for max bar size
max_left = max(max_left, height[j]);
}
for (int j = i; j < size; j++) { //Search the right part for max bar size
max_right = max(max_right, height[j]);
}
ans += min(max_left, max_right) - height[i];
}
return ans;
}
动态规划
所谓的动态规划就是提前把元素对应的左右两边的元素储存起来,然后通过一次遍历即可得到最后的结果。具体代码参见下面。
c++
int trap(vector<int>& height)
{
if(height == null)
return 0;
int ans = 0;
int size = height.size();
vector<int> left_max(size), right_max(size);
left_max[0] = height[0];
for (int i = 1; i < size; i++) {
left_max[i] = max(height[i], left_max[i - 1]);
}
right_max[size - 1] = height[size - 1];
for (int i = size - 2; i >= 0; i--) {
right_max[i] = max(height[i], right_max[i + 1]);
}
for (int i = 1; i < size - 1; i++) {
ans += min(left_max[i], right_max[i]) - height[i];
}
return ans;
}
利用两个指针
这个算法是我觉着很有技巧的算法
具体的过程就是维护两个指针,分别从数组的最左边和最右边开始。向中间移动左右两边的指针,当右边指针对应的高度大于左边的指针的时候,计算高度差。然后移动左边的指针,当左边的指针大于右边的指针的时候计算高度差,然后移动右边的指针。就这样每次移动进行判断,计算高度差。最后到两个指针重合于一点。
这个算法LeetCode上有对应的短片,可以看到相应的过程,感觉这个是实现起来最优雅的方法了(向大佬低头。)
具体代码如下
c++
int trap(vector<int>& height)
{
int left = 0, right = height.size() - 1;
int ans = 0;
int left_max = 0, right_max = 0;
while (left < right) {
if (height[left] < height[right]) {
height[left] >= left_max ? (left_max = height[left]) : ans += (left_max - height[left]);
++left;
}
else {
height[right] >= right_max ? (right_max = height[right]) : ans += (right_max - height[right]);
--right;
}
}
return ans;
}
持续更新LeetCode的学习过程,大家可以多翻翻这个博客或者去我的github