
人工智能
文章平均质量分 82
严文文-Chris
这个作者很懒,什么都没留下…
展开
-
大模型是如何生成内容的?
步骤描述1️⃣将输入文本切分成 token2️⃣利用 Transformer 理解上下文3️⃣预测下一个 token(词)4️⃣重复预测,直到生成完成🎲通过 sampling 策略控制风格和多样性。原创 2025-04-24 19:36:31 · 329 阅读 · 0 评论 -
【大模型有哪些训练阶段?】
大模型(如 GPT、BERT 等)训练一般可以分为以下,每个阶段都承担着不同的职责,共同推动模型从“语言新手”成长为“多任务专家”。原创 2025-04-24 19:35:32 · 340 阅读 · 0 评论 -
AI智能体小结
在人工智能中,“智能体(Agent)”指的是一个能够感知其所处环境,并基于目标做出决策并采取行动的实体。若该智能体具备某种智能(如学习能力、推理能力、规划能力等),我们就称之为AI智能体。著名的AI专家 Russell 和 Norvig 在其经典教材《Artificial Intelligence: A Modern Approach》中指出:“智能体是能够通过传感器感知环境,通过执行器对环境做出反应的实体。原创 2025-04-15 19:57:24 · 503 阅读 · 0 评论 -
【人工智能的基础是什么?】
人工智能(AI)的基础是一个综合体系,涵盖数学、计算机科学、认知科学、工程学等多个领域。:人工神经网络(ANN),包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)、Transformer等。• 研究神经网络(如CNN、RNN)和深度学习框架(TensorFlow/PyTorch)。:计算机视觉(感知)+ 强化学习(决策)+ 知识图谱(高精地图)。:提升模型对关键信息的聚焦能力(如BERT、GPT)。:归结原理、反向链式推理(早期AI的核心方法)。:基于预定义规则进行决策(如医疗诊断专家系统)。原创 2025-04-10 09:27:29 · 438 阅读 · 0 评论 -
【对抗神经网络】
GAN通过生成器和判别器的对抗学习,成为生成任务中最有潜力的模型之一。它不仅在图像生成、超分辨率、风格迁移等领域取得了卓越效果,还被应用于医疗、自动驾驶等实际应用中。尽管GAN存在训练不稳定等问题,但随着WGAN、cGAN等改进模型的发展,GAN的应用前景越来越广阔。原创 2024-11-12 21:18:13 · 1081 阅读 · 0 评论 -
【循环神经网络】
RNN是一种强大的序列建模工具,适合处理各种时间序列和自然语言数据。然而,传统RNN在处理长序列时存在梯度消失问题,随着LSTM和GRU等改进模型的引入,RNN的性能得到了极大提升。无论是在自然语言处理、语音识别,还是时间序列分析等领域,RNN都发挥了重要作用。原创 2024-11-12 20:59:31 · 1206 阅读 · 0 评论 -
【卷积神经网络】
卷积神经网络(Convolutional Neural Network,缩写CNN)是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型。原创 2024-11-12 20:47:46 · 1035 阅读 · 0 评论