转自:http://blog.sina.com.cn/s/blog_9dfc6f5f01015nu7.html
诺西笔试最后一道题,题意:
把只包含质因子2、3和5的数称作丑数(Ugly Number),例如:2,3,4,5,6,8,9,10,12,15,等,习惯上我们把1当做是第一个丑数。写一个高效算法,返回第n个丑数。
最普通(也最耗时)的做法是从1开始遍历,然后判断这个数的因式分解中只包含2,3,5,满足则找到了一个,一直找下去,直到第n个被找出!测试了一下,找第1500个丑数耗时40秒!
分析:假设数组ugly[N]中存放不断产生的丑数,初始只有一个丑数ugly[0]=1,由此出发,下一个丑数由因子2,3,5竞争产生,得到ugly[0]*2, ugly[0]*3, ugly[0]*5, 显然最小的那个数是新的丑数,所以第2个丑数为ugly[1]=2,开始新一轮的竞争,由于上一轮竞争中,因子2获胜,这时因子2应该乘以ugly[1]才显得公平,得到ugly[1]*2,ugly[0]*3,ugly[0]*5, 因子3获胜,ugly[2]=3,同理,下次竞争时因子3应该乘以ugly[1],即:ugly[1]*2, ugly[1]*3, ugly[0]*5, 因子5获胜,得到ugly[3]=5,重复这个过程,直到第n个丑数产生。总之:每次竞争中有一个(也可能是两个)因子胜出,下一次竞争中 胜出的因子就应该加大惩罚!
程序如下所示(只要把程序中的因子改一下就可以得到新的题目),耗时忽略不计:
运行结果:第1500个丑数:859963392, 第1691个丑数2 125 764 000,第1692个丑数就越界了。
int表示的最大整数是2,147,483,647,可由std::cout<<(std::numeric_limits<int>::max)()<<"\n";给出!
- #include <iostream>
- using namespace std;
- int mymin(int a, int b, int c)
- {
- int temp = (a < b ? a : b);
- return (temp < c ? temp : c);
- }
- int FindUgly(int n) //
- {
- int* ugly = new int[n];
- ugly[0] = 1;
- int index2 = 0;
- int index3 = 0;
- int index5 = 0;
- int index = 1;
- while (index < n)
- {
- int val = mymin(ugly[index2]*2, ugly[index3]*3, ugly[index5]*5); //竞争产生下一个丑数
- if (val == ugly[index2]*2) //将产生这个丑数的index*向后挪一位;
- ++index2;
- if (val == ugly[index3]*3) //这里不能用elseif,因为可能有两个最小值,这时都要挪动;
- ++index3;
- if (val == ugly[index5]*5)
- ++index5;
- ugly[index++] = val;
- }
- int result = ugly[n-1];
- delete[] ugly;
- return result;
- }
- int main()
- {
- int num=1;
- printf("input the number: \n");
- scanf("%d", &num);
- printf("%d \n",FindUgly(num));
- return 0;
- }