找到第1500个丑数

把只包含质因子2、3和5的数称作丑数。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第1500个丑数。


暴力的一点的方法, 可以从1开始遍历, 依次判断是否是丑数, 如果是丑数, 计数器+1, 当计数器加到1500的时候, 这个数字就是丑数了.

- (void)viewDidLoad {
    [super viewDidLoad];
    
    [self findUglyNum];
    
}

// 找到丑数
- (void)findUglyNum {

    NSMutableArray * array = [NSMutableArray arrayWithCapacity:1600];
    int num = 1;
    while (array.count<1500) {
        
        if ([self isUglyNum:num]){
            [array addObject:@(num)];
            NSLog(@"第%lu个  %d",(unsigned long)array.count,num);
        }
        num++;
    }

    // 第1500个  859963392
    NSLog(@"结束%@",array.lastObject);
}

- (BOOL)isUglyNum:(NSInteger)num {
    
    while (num%2==0) {
        num /= 2;
    }
    while (num%3==0) {
        num /= 3;
    }
    while (num%5==0) {
        num /= 5;
    }
    return num == 1;
}

在实际运行的过程中, 前1000个计算还是很快的, 到1000之后计算间隔就能明显的感觉到了, 计算第1500个需要用时1分20秒左右. 时间复杂度的话,  需要从1到859963392次遍历 , 每次遍历判断是否为丑数是logN级别的, 总体时间复杂度不太好衡量. 


每个丑数都可以分解成任意个2, 3, 5的组合乘积,   

任意一个丑数 = (2^N2) * (3^N3) * (5^N5)

= (2^N2-1) * (3^N3) * (5^N5) * 2 = 前面某个丑数 * 2

= (2^N2) * (3^N3-1) * (5^N5) * 3 = 前面某个丑数 * 3

= (2^N2) * (3^N3) * (5^N5-1) * 5 = 前面某个丑数 * 5

根据这个, 我们根据前面的丑数生成后面的丑数, 避免每次都进行判断是否为丑数. 可以就有一个问题, 比如10后面的数字有很多, 怎么判断生成的那个丑数是比10大一点点,  而没有超过其他丑数呢?  我们可以通过前面的丑数*2生成t2Max,  前面的某个丑数*3生成t3Max , 前面的某个丑数 * 5生成t5Max,  然后取 t2Max, t3Max,  t5Max中的最小值 , 那么这个就是下一个丑数了 , 不断循环, 直到找到第1500个.

- (void)viewDidLoad {
    [super viewDidLoad];
    
    [self findUglyNum2];

}

// 找到丑数, 优化
- (void)findUglyNum2 {
    
    NSMutableArray<NSNumber *> * array = [NSMutableArray arrayWithCapacity:1500];
    [array addObject:@(1)];


    // 记录上次某个丑数下标, 避免每次从头开始找
    int t2 = 0;
    int t3 = 0;
    int t5 = 0;
    
    int t2Max = 0;
    int t3Max = 0;
    int t5Max = 0;
    
    while (array.count<1500) {
        
        int currentMax = array.lastObject.intValue;
        
        while (t2Max<=currentMax) {
            t2Max = array[t2].intValue *2;
            t2 ++;
        }
        while (t3Max<=currentMax) {
            t3Max = array[t3].intValue*3;
            t3++;
        }
        while (t5Max<=currentMax) {
            t5Max = array[t5].intValue*5;
            t5++;
        }
        
        int nextValue = MIN(t2Max, MIN(t3Max, t5Max) );
        
        [array addObject:@(nextValue)];
        NSLog(@"第%lu个  %d",(unsigned long)array.count,nextValue);

    }
    // 859963392
    NSLog(@"结果 : %@",array.lastObject);

}

这个算法的时间可以再毫秒内完成, 时间复杂度是O(N), 需要一个额外的空间O(N).

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值