把只包含质因子2、3和5的数称作丑数。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第1500个丑数。
暴力的一点的方法, 可以从1开始遍历, 依次判断是否是丑数, 如果是丑数, 计数器+1, 当计数器加到1500的时候, 这个数字就是丑数了.
- (void)viewDidLoad {
[super viewDidLoad];
[self findUglyNum];
}
// 找到丑数
- (void)findUglyNum {
NSMutableArray * array = [NSMutableArray arrayWithCapacity:1600];
int num = 1;
while (array.count<1500) {
if ([self isUglyNum:num]){
[array addObject:@(num)];
NSLog(@"第%lu个 %d",(unsigned long)array.count,num);
}
num++;
}
// 第1500个 859963392
NSLog(@"结束%@",array.lastObject);
}
- (BOOL)isUglyNum:(NSInteger)num {
while (num%2==0) {
num /= 2;
}
while (num%3==0) {
num /= 3;
}
while (num%5==0) {
num /= 5;
}
return num == 1;
}
在实际运行的过程中, 前1000个计算还是很快的, 到1000之后计算间隔就能明显的感觉到了, 计算第1500个需要用时1分20秒左右. 时间复杂度的话, 需要从1到859963392次遍历 , 每次遍历判断是否为丑数是logN级别的, 总体时间复杂度不太好衡量.
每个丑数都可以分解成任意个2, 3, 5的组合乘积,
任意一个丑数 = (2^N2) * (3^N3) * (5^N5)
= (2^N2-1) * (3^N3) * (5^N5) * 2 = 前面某个丑数 * 2
= (2^N2) * (3^N3-1) * (5^N5) * 3 = 前面某个丑数 * 3
= (2^N2) * (3^N3) * (5^N5-1) * 5 = 前面某个丑数 * 5
根据这个, 我们根据前面的丑数生成后面的丑数, 避免每次都进行判断是否为丑数. 可以就有一个问题, 比如10后面的数字有很多, 怎么判断生成的那个丑数是比10大一点点, 而没有超过其他丑数呢? 我们可以通过前面的丑数*2生成t2Max, 前面的某个丑数*3生成t3Max , 前面的某个丑数 * 5生成t5Max, 然后取 t2Max, t3Max, t5Max中的最小值 , 那么这个就是下一个丑数了 , 不断循环, 直到找到第1500个.
- (void)viewDidLoad {
[super viewDidLoad];
[self findUglyNum2];
}
// 找到丑数, 优化
- (void)findUglyNum2 {
NSMutableArray<NSNumber *> * array = [NSMutableArray arrayWithCapacity:1500];
[array addObject:@(1)];
// 记录上次某个丑数下标, 避免每次从头开始找
int t2 = 0;
int t3 = 0;
int t5 = 0;
int t2Max = 0;
int t3Max = 0;
int t5Max = 0;
while (array.count<1500) {
int currentMax = array.lastObject.intValue;
while (t2Max<=currentMax) {
t2Max = array[t2].intValue *2;
t2 ++;
}
while (t3Max<=currentMax) {
t3Max = array[t3].intValue*3;
t3++;
}
while (t5Max<=currentMax) {
t5Max = array[t5].intValue*5;
t5++;
}
int nextValue = MIN(t2Max, MIN(t3Max, t5Max) );
[array addObject:@(nextValue)];
NSLog(@"第%lu个 %d",(unsigned long)array.count,nextValue);
}
// 859963392
NSLog(@"结果 : %@",array.lastObject);
}
这个算法的时间可以再毫秒内完成, 时间复杂度是O(N), 需要一个额外的空间O(N).