树状数组求区间极值

这个算法只支持单点修改和区间查询最值。每一次维护和查询的时间复杂度都是O((logn)^2),但这是满打满算的时间复杂度。

假设是要维护和查询区间的最大值(最小值将max改成min 就好了)

这个算法和树状数组维护和查询区间和的方法很相似:

一、数组的含义

1、在维护和查询区间和的算法中,h[x]中储存的是[x,x-lowbit(x)+1]中每个数的和,

2、在求区间最值的算法中,h[x]储存的是[x,x-lowbit(x)+1]中每个数的最大值。

求区间最值的算法中还有一个a[i]数组,表示第i个数是多少。

(其中lowbit(x) = x & (-x) 这个学过树状数组的应该都知道吧。。。。。)

二、单点修改后的更新

1、在维护区间和的算法中,是这样维护单点修改的

void updata(int k, int val)  
{  
    while (k <= n)  
    {  
        h[k] += val;  
        k += lowbit(k);  
    }  
}  

相当于是在每个包含它的数组中加上了增加的值

2、在来看维护区间最大值的算法,我们先看一整段区间[1,n]都需要初始化的情况。(即 h[] 数组都为0,现在需要用 a[] 数组更新 h[] 数组)

void updata(int k, int val)  
{  
    while (k <= n)  
    {  
        h[k] = max(h[k], val);  
        k += lowbit(k);  
    }  
}  

这样是可行,于是我们就有了一个O(n*logn)的维护方法,即当要更新一个数的时候,把 h[] 数组清零, 然后用数组 a[] 去更新 h[] 数组。

但这个复杂度显然太高了。

可以发现:对于x,可以转移到x的只有,x-2^0,x-2^1,x-2^2,…….,x-2^k (k满足2^k < lowbit(x)且2^(k+1)>=lowbit(x))
也就是xd到x-lowbit(x)+1这个区间,这也正是我们需要维护的。

举例:

若 x = 1010000

= 1001000 + lowbit(1001000) = 1001000 + 1000 = 1001000 + 2^3

= 1001100 + lowbit(1001100) = 1001100 + 100 = 1001100 + 2^2

= 1001110 + lowbit(1001110) = 1001110 + 10 = 1001110 + 2^1

= 1001111 + lowbit(1001111) = 1001111 + 1 = 1001111 + 2^0

所以对于每一个h[i],在保证h[1…i-1]都正确的前提下,要重新计算h[i]值的时间复杂度是O(logn),具体方法如下:

h[x] = a[x];  
lx = lowbit(x);  
for (k=1; k<lx; k<<=1)  h[x] = max(h[x], h[x-k]);  
x += lowbit(x);  

这样,我们就可以得到一个和树状数组维护区间合算法很像的算法

void updata(int x)  
{  
    int lx, k;  
    while (x <= n)  
    {  
        h[x] = a[x];  
        lx = lowbit(x);  
        for (k=1; k<lx; k<<=1)  
            h[x] = max(h[x], h[x-k]);  
        x += lowbit(x);  
    }         
}  

这个算法的时间复杂度是O((logn)^2),所以现在就可以在O((logn)^2)的时间内完成最值的区间维护了。

三、区间查询
1、树状数组求区间合的算法是这样子的:

int query(int k)  
{  
    int ans = 0;  
    while (k > 0)  
    {  
        ans += h[k];  
        k -= lowbit(k);  
    }  
    return ans;  
}  

2、树状数组求区间最大值:

直接照搬求区间合的方法显然是不行的。

因为区间合中,要查询[x,y]的区间合,是求出[1,x-1]的合与[1,y]的合,然后相减就得出了[x,y]区间的合。

而区间最值是没有这个性质的,所以只能够换一个思路。

设query(x,y),表示[x,y]区间的最大值

因为h[y]表示的是[y,y-lowbit(y)+1]的最大值。

所以,可以这样求解:

若y-lowbit(y) > x ,则query(x,y) = max( h[y] , query(x, y-lowbit(y)) );
也就是包含在x–y这个区间中
若y-lowbit(y) <=x,则query(x,y) = max( a[y] , query(x, y-1);
这种情况就是超出了x–y的范围,所以不能直接用y–lowbit(y),只能减少y。

这个递归求解是可以求出解的,且可以证明这样求解的时间复杂度是O((logn)^2)

具体代码:

int query(int x, int y)  
{  
    int ans = 0;  
    while (y >= x)  
    {  
        ans = max(a[y], ans);    
        for (--y; y-lowbit(y) >= x; y -= lowbit(y))  
        ans = max(h[y], ans);  
    }  
    return ans;  
}  

时间复杂度的证明:(换成二进制来看)

因为y经过Logn次变换以后,其与x不同的最高位至少下降了1位,所以最多进行(logn)^2次变换

举例:

y = 1010000

x = 1000001

1010000

=> 1001111 => 1001110 =>1001100 =>1001000

=>1000111 => 1000110 => 1000100

=> 1000011 = > 1000010

=>1000001

=>1000000 < 1000001

最后贴上我hdu1754的代码,这一题就是一道单点修改和区间查询最大值的题。

#include <iostream>  
#include <stdio.h>  
#include <stdlib.h>  
using namespace std;  

const int MAXN = 3e5;  
int a[MAXN], h[MAXN];  
int n, m;  

int lowbit(int x)  
{  
    return x & (-x);  
}  
void updata(int x)  
{  
    int lx, i;  
    while (x <= n)  
    {  
        h[x] = a[x];  
        lx = lowbit(x);  
        for (i=1; i<lx; i<<=1)  
            h[x] = max(h[x], h[x-i]);  
        x += lowbit(x);  
    }         
}  
int query(int x, int y)  
{  
    int ans = 0;  
    while (y >= x)  
    {  
        ans = max(a[y], ans);  
        y --;  
        for (; y-lowbit(y) >= x; y -= lowbit(y))  
            ans = max(h[y], ans);  
    }  
    return ans;  
}  
int main()  
{  
    int i, j, x, y, ans;  
    char c;  
    while (scanf("%d%d",&n,&m)!=EOF)  
    {  
        for (i=1; i<=n; i++)  
            h[i] = 0;  
        for (i=1; i<=n; i++)  
        {  
            scanf("%d",&a[i]);  
            updata(i);  
        }  
        for (i=1; i<=m; i++)  
        {  
            scanf("%c",&c);  
            scanf("%c",&c);  
            if (c == 'Q')  
            {  
                scanf("%d%d",&x,&y);  
                ans = query(x, y);  
                printf("%d\n",ans);  
            }  
            else if (c == 'U')  
            {  
                scanf("%d%d",&x,&y);  
                a[x] = y;  
                updata(x);  
            }  
        }  
    }  
    return 0;  
}  
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值