对称二叉树(力扣101)

这道题翻译过来就是判断根节点的左右子树是否可以通过翻转,变得完全一样。如果可以,则这棵二叉树为对称二叉树。那么什么样的左右子树可以通过翻转相互变换呢?它们的节点的数值一定对称分布。那么我们就需要同时遍历左右树,不断比较左右子树的对称节点的数值是否相等。要实现这个思路,也要基于最基础的二叉树遍历。如果对于二叉树的遍历不熟悉,可以看我的这篇文章:二叉树的遍历(深度遍历)-CSDN博客 其实广度优先也可以,你们可以试试,这道题我就使用递归来做。

那么我们该选择哪一种递归顺序呢?按照上面的思路,我们需要将对称节点的数值是否相等的判断结果返回给父节点。通过逐层的递归返回,我们最终可以得到根节点的左右子树的对称节点数值都相等。而要实现这个操作,我们只能采用后序遍历。大家可以结合我下面的代码和注释理解。

代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool compare(TreeNode* left,TreeNode* right){
        //递归终止条件
        if(left == NULL && right == NULL){
            return true;
        }else if(left == NULL && right != NULL){
            return false;
        }else if(left != NULL && right == NULL){
            return false;
        }else if(left != NULL && right != NULL && left -> val != right -> val){
            return false;
        }
        //左递归判断靠外的对称节点数值是否相等
        bool outside = compare(left -> left,right -> right);
        //右递归判断靠里的对称节点数值是否相等
        bool inside = compare(left -> right,right -> left);
        //处理逻辑:在父节点位置将左右子树的对称节点数值是否相等的判断结果返回
        return outside && inside;
    }
    bool isSymmetric(TreeNode* root) {
        return compare(root -> left,root -> right);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值