说明:1,1,2,3,5,8,13,21,34,55,89......这样是数列称为斐波那契数列
1、利用递归思想处理
public static long method(int num){
if(num <= 0){
return 0;
}else if(num <= 2){
return 1;
}else{
return method(num - 1) + method(num - 2);
}
}
此种方式效率太低,时间复杂度为O(2^n)
2、利用数组思想处理
public static long method1(int num){
if(num <= 0){
return 0;
}else if(num <= 2){
return 1;
}else{
long[] arrs = new long[num];
arrs[0] = 1;
arrs[1] = 1;
for (int i=2;i<num;i++) {
arrs[i] = arrs[i-1] + arrs[i-2];
}
return arrs[num-1];
}
}
此种方式效率比递归处理好很多,时间复杂度为O(n),空间复杂度为O(n)
3、直接求取
public static long method2(int num){
if(num <= 0){
return 0;
}else if(num <= 2){
return 1;
}else{
long a1 = 1;
long a2 = 1;
long result = 0;
for (int i=3;i<=num;i++) {
result = a2 + a1;
a1 = a2;
a2 = result;
}
return result;
}
}
此种方式效率比递归处理好很多,时间复杂度为O(n),空间复杂度为O(1)