面试
文章平均质量分 70
yl_sjtu
这个作者很懒,什么都没留下…
展开
-
求最大整数子序列和 以及C++读取数据
在做笔试题遇到读取一串数据,然后保存到数组中,以回车键为结束符while((c=getchar())!='\n'){if(c!=' '){ungetc(c,stdin);cin>>data[i++];}}求最大整数子序列和,考虑了全部输入为负数时,就输出整数中最大数int maxsubsum(int size,int data[]){int ma原创 2017-08-26 16:14:59 · 751 阅读 · 0 评论 -
SVM推导
支持向量机是属于原创性、非组合的具有明显直观几何意义的分类算法,具有较高的准确率。 使用SVM算法的思路:(1)简单情况,线性可分情况,把问题转化为一个凸优化问题,可以用拉格朗日乘子法简化,然后用既有的算法解决;(2)复杂情况,线性不可分,用核函数将样本投射到高维空间,使其变成线性可分的情形,利用核函数来减少高纬度计算量。 一、SVM相关基本概念 分割超平转载 2017-09-19 16:45:07 · 892 阅读 · 0 评论 -
逻辑回归-参数迭代公式推导
原始出处:http://sbp810050504.blog.51cto.com/2799422/1608064在《机器学习实战》一书的第5章中讲到了Logistic用于二分类问题。书中只是给出梯度上升算法代码,但是并没有给出数学推导。故哪怕是简单的几行代码,依然难以理解。 对于Logistic回归模型而言,需要读者具有高等数学、线性代数、概率论和数理统计的基础的数学基础。高等数学部分能理解偏导数即转载 2017-09-19 09:59:02 · 1500 阅读 · 1 评论 -
图的存储结构-邻接矩阵
图的邻接矩阵存储方式是用两个数组来表示图。一个一维的数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。#includeusing namespace std;#define MAXVEX 100/*最大顶点数*/#define INFINITY 65535//表示权值得无穷typedef int EdgeType;//边上权值类型typedef char Vert转载 2017-09-01 16:12:02 · 330 阅读 · 0 评论 -
归并排序算法
归并排序是将数列a[l,h]分成两半a[l,mid]和a[mid+1,h]分别进行归并排序,然后再将这两半合并起来。在合并两个数列,只要从比较两个数列的第一个数,谁小就先取谁,取了之后就在对应数列中删除这个数。然后再比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。//将有序数组a[]和b[]合并到c[]中 void MemeryArray(int a[], int n, i转载 2017-08-30 22:37:38 · 200 阅读 · 0 评论 -
有一个数组,让找到两个不重复的连续子序列A,B ,求Max(Sum(A)-Sum(B)。
有一个数组,让找到两个不重复的连续子序列A,B ,求Max(Sum(A)-Sum(B)。int Maxsum(vector&A){ int sum=0,ma=-10000; vectorsumA; vectorsumB; for(int i=0;i<A.size();i++) { sum+=A[i]; ma=max(ma,sum); sumA.push_back(ma)原创 2017-09-06 21:57:59 · 2141 阅读 · 0 评论 -
深度学习面试题
1.梯度消失爆炸的原因神经网络梯度不稳定性:前面层的梯度是来自于后面层上梯度的乘乘积,当存在过多的层就出现了内在本质的不稳定梯度消失:sigmoid 导数最大值为1/4,abs(w)梯度爆炸:当权值过大,前面层比后面层梯度变化更快,会引起梯度爆炸问题。如何解决梯度消失或爆炸:ReLU替代sigmoid2. overfitting怎么解决dropout:开始训练的时候我们随机原创 2017-09-06 10:28:45 · 2371 阅读 · 0 评论 -
BN
/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。目前几乎已经成为DL的标配了,任何有志于学习DL的同学们朋友们雷迪斯俺的詹特曼们都应该好好学一学BN。转载 2017-09-06 10:11:04 · 382 阅读 · 0 评论 -
cnn学习之卷积或者池化后输出的map的size计算
相信各位在学习cnn的时候,常常对于卷积或者池化后所得map的的大小具体是多少,不知道怎么算。尤其涉及到边界的时候。首先需要了解对于一个输入的input_height*input_widtht的图像,在卷积或者池化的时候,经常需要加padding,这是为了处理边界问题时而采用的一种方式,于是原输入就变成了下图所示:对于输出的size计算 如下图:out_height=((input_heigh转载 2017-09-13 11:02:48 · 3125 阅读 · 0 评论 -
Faster-RCNN
↑↑↑↑目录在这里↑↑↑↑↑Faster RCNN github : https://github.com/rbgirshick/py-faster-rcnnFaster RCNN paper : https://arxiv.org/abs/1506.01497Bound box regression详解 : http://download.csdn.net/download/zy10340923转载 2017-09-05 14:55:58 · 549 阅读 · 0 评论 -
DenseNet
论文:Densely Connected Convolutional Networks 论文链接:https://arxiv.org/pdf/1608.06993.pdf 代码的github链接:https://github.com/liuzhuang13/DenseNet文章详解: 这篇文章是CVPR2017的oral,非常厉害。文章提出的DenseNet(Dense Convolution转载 2017-09-05 14:52:58 · 1035 阅读 · 0 评论 -
SegNet
SegNet 介绍转载 2017-09-05 14:44:54 · 1032 阅读 · 0 评论 -
CNN求导
Deep learning:五十一(CNN的反向求导及练习) 前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它。虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好。而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同转载 2017-09-12 11:06:16 · 968 阅读 · 0 评论