P7909 [CSP-J 2021] 分糖果 题解

[CSP-J 2021] 分糖果

题目背景

红太阳幼儿园的小朋友们开始分糖果啦!

题目描述

红太阳幼儿园有 n n n 个小朋友,你是其中之一。保证 n ≥ 2 n \ge 2 n2

有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。

由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 R R R 块糖回去。

但是拿的太少不够分的,所以你至少要拿 L L L 块糖回去。保证 n ≤ L ≤ R n \le L \le R nLR

也就是说,如果你拿了 k k k 块糖,那么你需要保证 L ≤ k ≤ R L \le k \le R LkR

如果你拿了 k k k 块糖,你将把这 k k k 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 n n n 块糖果,幼儿园的所有 n n n 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 n n n 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励

作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 n , L , R n, L, R n,L,R,并输出你最多能获得多少作为你搬糖果的奖励的糖果数量。

输入格式

输入一行,包含三个正整数 n , L , R n, L, R n,L,R,分别表示小朋友的个数、糖果数量的下界和上界。

输出格式

输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。

样例 #1

样例输入 #1

7 16 23

样例输出 #1

6

样例 #2

样例输入 #2

10 14 18

样例输出 #2

8

样例 #3

样例输入 #3

见附件中的 candy/candy3.in。

样例输出 #3

见附件中的 candy/candy3.ans。

提示

【样例解释 #1】

k = 20 k = 20 k=20 块糖放入篮子里。

篮子里现在糖果数 20 ≥ n = 7 20 \ge n = 7 20n=7,因此所有小朋友获得一块糖;

篮子里现在糖果数变成 13 ≥ n = 7 13 \ge n = 7 13n=7,因此所有小朋友获得一块糖;

篮子里现在糖果数变成 6 < n = 7 6 < n = 7 6<n=7,因此这 6 6 6 块糖是作为你搬糖果的奖励

容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 6 6 6 块(不然,篮子里的糖果数量最后仍然不少于 n n n,需要继续每个小朋友拿一块),因此答案是 6 6 6

【样例解释 #2】

容易发现,当你拿的糖数量 k k k 满足 14 = L ≤ k ≤ R = 18 14 = L \le k \le R = 18 14=LkR=18 时,所有小朋友获得一块糖后,剩下的 k − 10 k - 10 k10 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 k = 18 k = 18 k=18 块是最优解,答案是 8 8 8

【数据范围】

测试点 n ≤ n \le n R ≤ R \le R R − L ≤ R - L \le RL
1 1 1 2 2 2 5 5 5 5 5 5
2 2 2 5 5 5 10 10 10 10 10 10
3 3 3 10 3 {10}^3 103 10 3 {10}^3 103 10 3 {10}^3 103
4 4 4 10 5 {10}^5 105 10 5 {10}^5 105 10 5 {10}^5 105
5 5 5 10 3 {10}^3 103 10 9 {10}^9 109 0 0 0
6 6 6 10 3 {10}^3 103 10 9 {10}^9 109 10 3 {10}^3 103
7 7 7 10 5 {10}^5 105 10 9 {10}^9 109 10 5 {10}^5 105
8 8 8 10 9 {10}^9 109 10 9 {10}^9 109 10 9 {10}^9 109
9 9 9 10 9 {10}^9 109 10 9 {10}^9 109 10 9 {10}^9 109
10 10 10 10 9 {10}^9 109 10 9 {10}^9 109 10 9 {10}^9 109

对于所有数据,保证 2 ≤ n ≤ L ≤ R ≤ 10 9 2 \le n \le L \le R \le {10}^9 2nLR109

【感谢 hack 数据提供】
wangbinfeng

0 前言

这道题是两年来我做过的代码量最少的一道普及组题目,考场上 10min\text{10min}10min 推出结果,100pts\text{100pts}100pts 应该没问题。(三个样例都过了,你谷民间数据也没错)


1 简化题意

给定正整数 n,L,R(2≤n≤L≤R≤109)n,L,R(2\le n\le L\le R\le10^9)n,L,R(2nLR109),求 max⁡k∈[L,R]{k mod n}\max\limits_{k\in[L,R]}\{k\bmod n\}k[L,R]max{kmodn}


2 题目分析

拿到手,发现这是一道明显的幼儿园高质量小朋友求偶人类高质量女性数学结论题。

R−L≤109R-L\le 10^9RL109

明显 O(n)O(n)O(n) 的做法不可取,怎么办?

自然地想到分析 L,RL,RL,Rnnn 之间的倍数关系。(因为要使 k mod nk\bmod nkmodn 最大,就一定要找尽量大的小于 nnn 的倍数的数)

l=⌊Ln⌋,r=⌊Rn⌋l=\left\lfloor\dfrac{L}{n}\right\rfloor,r=\left\lfloor\dfrac{R}{n}\right\rfloorl=nL,r=nR,容易发现如果 l=rl=rl=r 的话,[L,R][L,R][L,R] 里面从小到大所有数模 nnn 的值是单调递增的,于是 k=Rk=Rk=Rk mod nk\bmod nkmodn 最大。

如果 l<rl<rl<r,说明在 (L,R](L,R](L,R] 中有至少一个 nnn 的倍数(记为 NNN)。显然,当 k=N−1k=N-1k=N1 时,k mod nk\bmod nkmodn 最大,为 n−1n-1n1

可以结合样例理解上述结论。


3 代码实现

#include<iostream>
#include<cstdio>
using namespace std;
int n,l,r;
int main(){
	cin>>n>>l>>r;
	if(l/n==r/n) cout<<r%n;
	else cout<<n-1;
	return 0;
}
根据提供的引用内容,CSP-J2021复赛有两道题目,别是糖果和小熊的果篮。 对于第一题糖果,题目来源是CCF,难度为入门。根据给出的代码,这是一个基于循环的算法,通过遍历[l,r]区间内的数,计算数对n取模后的最大值。具体的实现细节可以参考引用中的代码。这道题目属于入门级别,比较简单。 第二题是关于小熊的果篮。给定一个长度为n的数组a,其中连续的相同元素被视为一个块,要求按照块的顺序输出每个块的头元素,并删除已输出的元素。具体的实现细节可以参考引用中的代码。这道题目需要使用双链表来处理,时间复杂度为O(n)。 综上所述,CSP-J2021复赛的题目包括糖果和小熊的果篮,具体的解题思路和代码实现可以参考上述引用内容。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [[CSP-J 2021]比赛题解](https://blog.csdn.net/weixin_56550385/article/details/126811201)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [新鲜出炉的 CSP-J 2021 复赛题目 题解](https://blog.csdn.net/qq_23109971/article/details/121024436)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只贴代码君

帅帅的你,留下你的支持吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值