RandomForest特征重要度问题

本文探讨了随机森林在特征选择中如何衡量特征重要性,主要通过不纯度的减少(如Gini系数)和袋外误差率来评估。在不纯度减少中,计算特征在所有决策树节点分裂时Gini指数的平均改变量。袋外误差率利用袋外样本计算分类错误率,通过对比特征改变前后的误差来判断特征的重要性。具体步骤包括计算袋外数据误差并对比随机改变特征后的误差变化,以此识别重要特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在构建随机森林的过程中,每一颗树所使用的数据不同,这使得每一颗树上的特征重要性表现的都不同。所以要评估每个特征在每棵树上的重要度来作为特征选择的依据。

随机森林衡量特征重要度的方法主要有两种,分别是Gini系数,和袋外误差率。

不纯度的减少(sklearn中使用)

随机森林的不纯度常用gini /entropy /information gain测量,以Gini系数为例:
将特征重要性评分(feature importance measures)用VIM表示,计算每个特征的Gini指数评分,即第j个特征在RF所有决策树中节点分裂不纯度的平均改变量。

Gini系数的计算公式如下,k代表有k个类别,Pmk表示k的样本权重。
在这里插入图片描述
特征xj在结点m的重要度,定义为在结点m分支前后,Gini指数的变化量。
VIMjm(Gini)=GIm-GIl-GIr
其中GIl,GIr表示结点m分枝后左右结点的Gini系数。
在这里插入图片描述

袋外误差率

  • 袋外样本
    随机决策树生成过程使用的是Boostrap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值