yarn任务运行流程

运行流程
1、客户端向RM中提交程序
2、RM向NM中分配一个container,并在该container中启动AM
3、AM向RM注册,这样用户可以直接通过RM査看应用程序的运行状态(然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束)
4、AM采用轮询的方式通过RPC协议向RM申请和领取资源,资源的协调通过异步完成
5、AM申请到资源后,便与对应的NM通信,要求它启动任务
6、NM为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务
7、各个任务通过某个RPC协议向AM汇报自己的状态和进度,以让AM随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
8、应用程序运行完成后,AM向RM注销并关闭自己

Hadoop YARN(Yet Another Resource Negotiator)是Hadoop的集群资源管理系统,负责集群资源的分配和任务的调度。以下是Hadoop YARN的执行流程: 1. 提交作业:用户通过客户端向YARN提交作业,包括应用程序的代码和所需的资源配置。 2. 资源请求:YARN的ResourceManager接收到作业提交请求后,会为该作业分配一个唯一的Application ID,并将作业相关的信息记录在内部数据结构中。 3. 资源分配:ResourceManager根据集群中可用的资源情况,分配合适的Container给作业。Container是一个虚拟的计算资源单元,可以运行一个或多个任务。 4. 任务调度:一旦ResourceManager为作业分配了Container,它会将Container的相关信息发送给NodeManager,NodeManager负责管理和监控Container的运行。 5. 任务执行:一旦NodeManager接收到Container的信息,它会启动Container,并运行作业中的任务任务可以是Map任务或Reduce任务,由应用程序代码定义。 6. 任务监控:NodeManager会监控任务运行状态,并将进度和日志信息发送给ResourceManager。 7. 容错和恢复:如果任务失败或节点故障,YARN会自动重新分配和启动失败的任务。此外,它还能够根据配置策略进行容错和恢复操作。 8. 完成作业:当作业中的所有任务都成功完成时,YARN会将作业的最终状态和结果返回给客户端。 总体而言,Hadoop YARN通过ResourceManager和NodeManager的协调与管理,实现了任务的分配、调度和执行,以及容错和恢复等功能,从而实现了高效的集群资源管理和作业执行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值