西安理工大学2024年程序设计校赛(校外同步赛)(ABCGIL)

比赛地址传送门

A.签到篇-上

#include <bits/stdc++.h>
using namespace std;
int main()
{
    string str;
    cin>>str;
    if(str=="A"||str=="B"||str=="C") cout<<"YES"<<'\n';
    else cout<<"NO"<<'\n';
    return 0;
}

B.签到篇-中

#include <bits/stdc++.h>
using namespace std;
const string name[]={
    "Eagle","Pigeons","People","Cow",
    "Fleas","Caterpillar","Leeches","Worms"
};
int main()
{
    string a,b,c;
    getline(cin,a),getline(cin,b),getline(cin,c);
    int result=1;
    if(a[0]=='I') result+=4;
    if(b[0]=='M'||b[0]=='W') result+=2;
    if((result==3&&c[1]=='e')||(result!=3&&c[0]=='H')) result++;
    cout<<name[result-1]<<'\n';
    return 0;
}

C.签到篇-下

当x、y、z相等时 a、b相等,否则一定有 a > b

#include <bits/stdc++.h>
using namespace std;
typedef long double ld;
int main()
{
    string a,b,c;
    cin>>a>>b>>c;
    if(a==b&&b==c) cout<<"=";
    else cout<<'>';
    return 0;
}

G.数字查询

典型数位dp,在求解之前维护一个数组 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示一个 i 位的数字且第 i 位上的数字是 j 的满足要求的数的个数(注意 j 的取值为 [ 0 , 9 ] [0,9] [0,9]),递推公式为

dp[i][j] = dp[i-1][j-2] + dp[i-1][j+2]
随后开始求解 y 以内的答案,假设 y 的各位数字为 abcde...,那么对于位数等于 y 的所有数字,答案中一定包括从 0 到 a-1xxxxxx 区间中满足要求的数字的个数,对于位数小于 y 的数字,答案中一定包括最高位为 0 到 9 的该位数的所有情况

例如,y = 427 时,对于位数为 3 的所有数字,答案中一定包括 [ 100 , 200 ) , [ 200 , 300 ) , [ 300 , 400 ) [100,200),[200,300),[300,400) [100,200),[200,300),[300,400)中所有满足要求的数字的个数(此处为什么没有 [ 0 , 100 ) [0,100) [0,100)区间呢?因为 [ 0 , 100 ) [0,100) [0,100)中的数字位数未达到 3 位,而我们此时仅考虑 3 位情况)。随后开始考虑位数为 2 的所有数字,此时可以发现,所有位数为 2 的数字一定小于 y,那么答案中一定包含了所有位数为 2 的数字中满足要求的数字。

然而,按照上面的策略计算出来的结果为 23,而正确的结果是 25,因为我们漏算了大于 400 而小于 y 的数字(420、424),所以对于遍历的每一位数,当当前位数以前的所有数字(比如枚举到第二位,则当前数字为 4、2)是否满足相邻两位绝对差等于 2,若满足,则加上可以放在这里的数字的情况。

ll dp[20][10]; // i 位的数字且第 i 位数字为 j 的所有方案数
void init()
{
    for(int i=0;i<=9;i++) dp[1][i]=1;
    for(int i=2;i<=18;i++) {
        for(int j=0;j<=9;j++) {
            if(j-2>=0) dp[i][j]+=dp[i-1][j-2];
            if(j+2<=9) dp[i][j]+=dp[i-1][j+2];
        }
    }
}
ll solve(string num)
{
    if(num.length()==1) return 0;
    ll res=0;
    int _last=-1;
    bool con=true;
    for(int i=0;i<num.length()-1;i++) {
        int _now=num[i]-'0';
        if(i==0) {
            for(int j=1;j<_now;j++) {
                res+=dp[num.length()-i][j];
            }
        }
         
        if(i) {
            for(int j=1;j<=9;j++) {
                res+=dp[num.length()-i][j];
            }
        }
         
        // 首位是 _now 的情况
        if(i&&con) {
            for(int j=0;j<_now;j++) {
                if(abs(_last-j)==2) {
                    res+=dp[num.length()-i][j];
                }
            }
        }
         
        if(i) con=con&&abs(_now-_last)==2;
        _last=_now;
    }
     
    if(con) {
        int _now=num.back()-'0';
        for(int j=0;j<=_now;j++) {
            if(abs(_last-j)==2) res++;
        }
    }
    return res;
}

I.哲学问题

由于:奇数+奇数=偶数、偶数+奇数=奇数,当给出数组和为奇数时,halo赢。当给出总和为偶数时,halo只要从数组中取出一个奇数,就会使得数组和变为奇数,halo赢。
所以当存在奇数时,halo必胜

void solve()
{
    int n;
    cin>>n;
    bool odd=false;
    while(n--) {
        ll x;
        cin>>x;
        odd=odd||x%2;
    }
     
    cout<<(odd?"halo":"parry")<<'\n';
}

L.kids 们的字符串游戏

用变量来表示当前相较于最初字串是否反转,若反转,则加在最后的字符应当加在头部,加在头部的应当加在最后。

#include <bits/stdc++.h>
using namespace std;
int main()
{
    ios::sync_with_stdio(false),cin.tie(0);
    int n,m;
    string line;
    cin>>n>>m>>line;
    stack<char> _front,_end;
    bool _reverse=false;
    while(m--) {
        int a,b;
        char op;
        cin>>a;
        if(a==1) _reverse=!_reverse;
        else {
            cin>>b>>op;
            if(_reverse) b=3-b;
            if(b==1) _front.push(op);
            else _end.push(op);
        }
    }
    
    if(_reverse) {
        swap(_front,_end);
        reverse(line.begin(),line.end());
    }
    while(!_front.empty()) {
        cout<<_front.top();
        _front.pop();
    }
    cout<<line;
    vector<char> End;
    while(!_end.empty()) {
        End.push_back(_end.top());
        _end.pop();
    }
    for(int i=End.size()-1;i>=0;i--) {
        cout<<End[i];
    }
    cout<<'\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值