问题描述
最大公共子序列
给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度。
状态转移方程为:如果A[i]=A[j],则dp[i][j]=dp[i-1][j-1]+1,如果不等,则dp[i][j]=Math.max(dp[i][j-1],dp[i-1][j])
public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int m=A.length();
int n=B.length();
int[][] dp=new int[m+1][n+1];
int max=0;
for(int i=0;i<m;i++){
dp[i][0]=0;
}
for(int j=0;j<n;j++){
dp[0][j]=0;
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(A.charAt(i-1)==B.charAt(j-1)){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
}
max=Math.max(max,dp[i][j]);
}
}
return max;
}
}
最大公共子串
与最大公共子序列相似,唯一的不同在于不相等时d[i][j]=0;
public class Solution {
/**
* @param A, B: Two string.
* @return: the length of the longest common substring.
*/
public int longestCommonSubstring(String A, String B) {
if(A==null || A.length()==0 ||B==null || B.length()==0){
return 0;
}
int m=A.length();
int n=B.length();
int[][] dp=new int[m+1][n+1];
for(int i=0;i<m;i++){
dp[i][0]=0;
}
for(int j=0;j<n;j++){
dp[0][j]=0;
}
int max=0;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(A.charAt(i-1)==B.charAt(j-1)){
dp[i][j]=dp[i-1][j-1]+1;
if(dp[i][j]>max){
max=dp[i][j];
}
}
else{
dp[i][j]=0;
}
}
}
return max;
}
}