最大公共子串&&最大公共子序列

问题描述

最大公共子序列

给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度。
状态转移方程为:如果A[i]=A[j],则dp[i][j]=dp[i-1][j-1]+1,如果不等,则dp[i][j]=Math.max(dp[i][j-1],dp[i-1][j])

public class Solution {
    /**
     * @param A, B: Two strings.
     * @return: The length of longest common subsequence of A and B.
     */
    public int longestCommonSubsequence(String A, String B) {
        int m=A.length();
        int n=B.length();
        int[][] dp=new int[m+1][n+1];
        int max=0;
        for(int i=0;i<m;i++){
            dp[i][0]=0;
        }
        for(int j=0;j<n;j++){
            dp[0][j]=0;
        }
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                if(A.charAt(i-1)==B.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
                }
                max=Math.max(max,dp[i][j]);
            }
        }
        return max;
    }
}

最大公共子串

与最大公共子序列相似,唯一的不同在于不相等时d[i][j]=0;

public class Solution {
    /**
     * @param A, B: Two string.
     * @return: the length of the longest common substring.
     */
    public int longestCommonSubstring(String A, String B) {
        if(A==null || A.length()==0 ||B==null || B.length()==0){
            return 0;
        }
        int m=A.length();
        int n=B.length();
        int[][] dp=new int[m+1][n+1];
        for(int i=0;i<m;i++){
            dp[i][0]=0;
        }
        for(int j=0;j<n;j++){
            dp[0][j]=0;
        }
        int max=0;
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                if(A.charAt(i-1)==B.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+1;
                    if(dp[i][j]>max){
                        max=dp[i][j];
                    }
                }
                else{
                    dp[i][j]=0;
                }
            }
        }
        return max;
    }
}
最长公共子序列(Longest Common Subsequence, LCS)和最长公共子串(Longest Common Substring)是两个常见的字符串相关问题。 最长公共子序列是指给定两个字符串,要求找到它们之间最长的公共子序列的长度。子序列是从原字符串中删除若干个字符而得到的新字符串,字符在新字符串中的相对顺序与原字符串中的保持一致。动态规划是求解LCS问题的常用方法。 以字符串s1 = "ABCBDAB"和s2 = "BDCAB"为例,可以使用动态规划的方法求解最长公共子序列的长度。首先创建一个二维数组dp,dp[i][j]表示s1的前i个字符和s2的前j个字符之间的最长公共子序列的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[len(s1)][len(s2)]即为最长公共子序列的长度。 对于最长公共子串,要求找到两个字符串中最长的公共连续子串的长度。连续子串是指在原字符串中连续出现的字符子序列。同样可以使用动态规划来解决该问题。 仍以上述两个字符串s1和s2为例,创建一个二维数组dp,dp[i][j]表示以s1[i-1]和s2[j-1]为结尾的公共子串的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = 0。 最后,dp矩阵中的最大值即为最长公共子串的长度。 以上就是求解最长公共子序列和最长公共子串的常见方法。在实际应用中,我们可以根据具体的问题选择合适的方法,并结合动态规划来解决这些字符串相关的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值