1. 练习题目
辅导初中学生数学的过程中,发现一道有意思的题目,分享如下。
1.1 题目描述
计算:
1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + ⋯ + 1 + 1 2010 2 + 1 2011 2 \sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\cdots+\sqrt{1+\frac{1}{
{2010}^2}+\frac{1}{
{2011}^2}} 1+121+221+1+221+321+1+321+421+⋯+1+201021+201121
本题是面向初二上学期的一道二次根式练习题,难度为“培优级”。
1.2 思路
这道题,应分析通项(即每一个根式项)。
2. 答题
2.1 分析通项
令通项为:
u n = 1 + 1 n 2 + 1 ( n + 1 ) 2 u_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{
{(n+1)}^2}} un=1+n21+(n+1)21
则题目即计算
∑ n = 1 2010 u n \sum_{n=1}^{2010}u_n n=1∑2010un
令
v n = 1 + 1 n 2 + 1 ( n + 1 ) 2 v_n=1+\frac{1}{n^2}+\frac{1}{
{(n+1)}^2} vn=1+n21+(n+1