在国内人工智能发展的壮阔蓝图里,数据是不可或缺的基石,AI模型的训练与优化高度依赖海量、多元的数据。然而,当下数据孤岛现象正成为横亘在AI协同发展道路上的巨石,让国内AI产业举步维艰。
在医疗领域,各大医院积累了丰富的患者病历、影像等数据。但这些数据分散在不同医院信息系统中,彼此孤立。一家医院的AI辅助诊断系统,因无法获取其他医院的数据,训练模型的样本单一,面对复杂病症时,诊断准确率受限。而科研机构想要开展AI医疗研究,也因难以整合多方数据,难以开发出普适性强的技术。这就导致医疗AI发展缓慢,无法充分发挥AI在疾病预测、精准治疗上的潜力,患者也难以享受到更优质、高效的医疗服务。
金融行业同样如此。银行、证券、保险等金融机构掌握着大量客户金融数据,却出于数据安全、商业竞争等考虑,不愿共享。当AI用于风险评估时,单一机构的数据无法全面勾勒客户风险画像,导致评估结果偏差。例如,银行在审核贷款时,若仅依据自身掌握的客户储蓄、信贷记录,而不结合证券投资、保险购买等信息,就可能误判客户的还款能力,增加金融风险。这使得AI在金融领域的应用局限于基础业务,难以向深度和广度拓展,制约了金融行业智能化转型的步伐。
交通领域的数据孤岛问题也不容忽视。城市交通管理部门、公交公司、网约车平台等拥有各自的数据,却缺乏有效整合。交通管理部门想利用AI优化交通信号灯时长,却因没有网约车出行数据来精准把握实时路况;网约车平台也无法获取交通管制信息提前规划路线,导致城市拥堵治理和出行服务优化都难以借助AI实现质的突破。
数据孤岛的形成,有技术标准不统一的原因,不同机构的数据格式、接口规范各异,难以对接。同时,法律法规不完善,数据权属、使用边界不明确,让机构不敢轻易共享数据。此外,企业竞争意识过强,担心数据共享会泄露商业机密,丧失竞争优势。
打破数据孤岛,实现数据共享与AI协同发展迫在眉睫。政府应主导建立统一的数据标准和规范,完善数据相关法律法规,明确数据权属和使用规则,消除机构间数据流通的顾虑。行业协会要发挥协调作用,推动企业间建立数据共享联盟,探索合理的数据共享模式和利益分配机制。企业自身也需转变观念,认识到数据共享带来的协同效应远大于竞争风险。只有这样,国内AI产业才能突破数据孤岛的束缚,实现从分散发展到协同共进的跨越,释放出AI的最大价值 。