一、WiredTiger介绍
MongoDB从3.0开始引入可插拔存储引擎的概念。目前主要有MMAPV1,WiredTiger存储引擎可供选择。在3.22源的消耗,节省约60%以上的硬盘资源。
二、WiredTiger读写模型
读缓存
理想情况下,MongoDB可以提供近似内存式的读写性能。WiredTiger引擎实现了数据的二级缓存,第一层是操作系统的页面缓存,第二层则是引擎提供的内部缓存。
读取数据时的流程如下:
1、数据库发起Buffer I/O读操作,由操作系统将磁盘数据页加载到文件系统的页缓存区。
2、引擎层读取页缓存区的数据,进行解压后存放到内部缓存区。
3、在内存中完成匹配查询,将结果返回给应用。
MongoDB为了尽可能保证业务查询的“热数据”能快速被访问,其内部缓存的默认大小达到了内存中的一半,该值由WiredTigerCacheSize参数指定,其默认的计算公式如下:
wiredTigerCacheSize=Math.max((RAM/2-1GB),256MB)
写缓冲
当数据发生写入时,MongoDB并不会立即持久化到磁盘上,而是先在内存中记录这些变更,之后通过CheckPoint机制将变化的数据写入磁盘。为什么要这么处理?主要有以下两个原因:
1、如果每次写入都触发一次磁盘I/O,那么开销太大,而且响应时延会比较大
2、多个变更的写入可以尽可能进行I/O合并,降低资源负荷。
思考:MongoDB会丢数据吗?
MongoDB单机下保证数据可靠性的机制包括以下两个部分:
CheckPoint(检查点)机制
快照(snapshot)描述了某一时刻(point-in-time)数据在内存中的一致性视图,而这种数据的一致性是WiredTiger通过MVCC(多版本并发控制)实现的。当建立CheckPoint时,WiredTiger会在内存中建立所有数据的一致性快照,并将该快照覆盖的所有数据变化一并进行持久化(fsync)。成功之后,内存中数据的修改才得以真正保存。默认情况下,MongoDB每60s建立一次CheckPoint,在检查点写入过程中,上一个检查点仍然是可用的。这样可以保证一旦出错,MongDB仍然能恢复到上一个检查点。
Journal日志
Journal是一种预写式日志(write ahead log)机制,主要用来弥补CheckPoint机制的不足,如果开启了Journal日志,那么WiredTiger会将每个写操作的redo日志写入Journal缓冲区,该缓冲区会频繁地将日志持久化到磁盘上。默认情况下,Journal缓冲区每100ms执行一次持久化。此外,Journal日志达到100MB,或是应用程序指定Journal:true,写操作都会触发日志的持久化。一旦MongoDB发生宕机,重启程序时会先恢复到上一个检查点,然后根据Journal日志恢复增量的变化。由于Journal日志持久化的间隔非常短,数据能得到更高的保障,如果按照当前版本的默认配置,则其在断电情况下最多会丢失100ms的写入数据。
WiredTiger写入数据的流程:
1、应用向MongoDB写入数据(插入、修改或删除)
2、数据库从内部缓存中获取当前记录所在的业块,如果不存在则会从磁盘中加载(Buffer I/O)
3、WiredTiger开始执行写事务,修改的数据写入页块的一个更新记录表,此时原来的记录仍然保持不变
4、如果开启了Journal日志,则在写数据的同时会写入一条Journal日志(Redo Log)。该日志在最长不超过100ms后写入磁盘。
5、数据库每隔60s执行一次CheckPoint操作,此时内存中的修改会真正刷入磁盘。
Journal日志的刷新周期可以通过参数storage.journal.commitIntervalMs指定,MongoDB 3.4及以下版本的默认值是50ms,而3.6版本之后调整到了100ms。由于Journal日志采用的是顺序I/O写操作,频繁地写入对磁盘的影响并不是很大。
CheckPoint的刷新周期可以调整storage.syncPeriodSecs参数(默认值60s),在MongoDB 3.4及以下版本中,当Journal日志达到2GB时同样会触发CheckPoint行为。如果应用存在大量随机写入,则CheckPoint可能会造成磁盘I/O的抖动。在磁盘性能不足的情况下,问题会更加显著,此时适当缩短CheckPoint周期可以让写入平滑一些。