matlab函数 bsxfun浅谈

网上关于bsxfun的东西不多,今天需要看到一个,由于原博文插入的图片显示不出来,于是笔者大发善心进行了contrl+V 以及alt+ctrl+A的操作,供大家交流学习。

 

bsxfun是一个matlab自版本R2007a来就提供的一个函数,作用是”applies an element-by-element binary operation to arrays a and b, with singleton expansion enabled.”

举个例子。假设我们有一列向量和一行向量。

a = randn(3,1), b = randn(1,3) a = -0.2453 -0.2766 -0.1913 b = 0.6062 0.5655 0.9057
我们可以很简单的使用matlab的外乘c=a*b来得到,如图
但如果我们想用”外加”呢?也就是说把上式求解过程中的乘号换做加号?
这时我们可以用c=bsxfun(@plus,a,b)来实现。
bsxfun的执行是这样的,如果a和b的大小相同,那么c=a+b. 但如果有某维不同,且a或b必须有一个在这一维的维数为1, 那么bsxfun就将少的这个虚拟的复制一些来使与多的维数一样。在我们这里,b的第一维只有1(只一行),所以bsxfun将b复制3次形成一个3×3的矩阵,同样也将a复制成3×3的矩阵。这个等价于c=repmat(a,1,3)+repmat(b,3,1)。这里
repmat(a,1,3) ans = -0.2453 -0.2453 -0.2453 -0.2766 -0.2766 -0.2766 -0.1913 -0.1913 -0.1913

repmat是显式的复制,当然带来内存的消耗。而bsxfun是虚拟的复制,实际上通过for来实现,等效于for(i=1:3),for(j=1:3),c(i,j)=a(i)+b(j);end,end。但bsxfun不会有使用matlab的for所带来额外时间。实际验证下这三种方式

>> c = bsxfun(@plus,a,b) c = 0.3609 0.3202 0.6604 0.3296 0.2889 0.6291 0.4149 0.3742 0.7144 >> c = repmat(a,1,3)+repmat(b,3,1) c = 0.3609 0.3202 0.6604 0.3296 0.2889 0.6291 0.4149 0.3742 0.7144 >> for(i=1:3),for(j=1:3),c(i,j)=a(i)+b(j);end,end,c c = 0.3609 0.3202 0.6604 0.3296 0.2889 0.6291 0.4149 0.3742 0.7144

从计算时间上来说前两种实现差不多,远高于for的实现。但如果数据很大,第二种实现可能会有内存上的问题。所以bsxfun最好。


这里@plus是加法的函数数柄,相应的有减法@minus, 乘法@times, 左右除等,具体可见 doc bsxfun.


 下面看一个更为实际的情况。假设我们有数据A和B, 每行是一个样本,每列是一个特征。我们要计算高斯核,既:


k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数 , 控制了函数的径向作用范围。


当然可以用双重for实现(如果第一直觉是用三重for的话…)。

K1 = zeros(size(A,1),size(B,1)); for i = 1 : size(A,1) for j = 1 : size(B,1) K1(i,j) = exp(-sum((A(i,:)-B(j,:)).^2)/beta); end end
使用2,000×1,000大小的A和B, 运行时间为88秒。
考虑下面向量化后的版本:
sA = (sum(A.^2, 2)); sB = (sum(B.^2, 2)); K2 = exp(bsxfun(@minus,bsxfun(@minus,2*A*B', sA), sB')/beta);
使用同样数据,运行时间仅0.85秒,加速超过100倍。
如要判断两者结果是不是一样,可以如下
assert(all(all(abs(K1-K2)<1e-12)))
C = bsxfun(fun,A,B) appliesthe element-by-element binary operation specified by the functionhandlefun to arrays A and B,with singleton expansion enabled.fun can be oneof the following built-in functions:

@plus

Plus

@minus

Minus

@times

Array multiply

@rdivide

Right array divide

@ldivide

Left array divide

@power

Array power

@max

Binary maximum

@min

Binary minimum

@rem

Remainder after division

@mod

Modulus after division

@atan2

Four quadrant inverse tangent

@hypot

Square root of sum of squares

@eq

Equal

@ne

Not equal

@lt

Less than

@le

Less than or equal to

@gt

Greater than

@ge

Greater than or equal to

@and

Element-wise logical AND

@or

Element-wise logical OR

@xor

Logical exclusive OR


### 回答1: bsxfun函数Matlab中的一个函数,用于对两个数组进行二元操作。它的作用是将两个数组进行广播,使它们的维度相同,然后再进行二元操作。这个函数的语法格式为: C = bsxfun(fun,A,B) 其中,fun是一个函数句柄,用于指定二元操作的函数;A和B是两个数组,可以是向量、矩阵或多维数组。函数的返回值C是一个与A和B维度相同的数组,其中每个元素都是对应位置上A和B的元素进行fun操作的结果。 bsxfun函数的优点是可以避免使用循环,提高代码的运行效率。它常用于矩阵运算、图像处理等领域。 ### 回答2: bsxfunMATLAB中一种非常有用的函数,它的全称为Binary Singleton Expansion Function。BSXFUN函数主要用于两个数组之间的处理,它能够将两个数组进行大小转换和广播,然后再进行相应的运算。BSXFUN函数可以对两个维度不同的数组进行运算,功能强大,可以大大提高数组运算的效率。 BSXFUN函数的用法与MATLAB中的矩阵运算非常类似,它可以是用运算符(+,-,*,/)来进行数组的运算。在进行运算时,BSXFUN函数将对输入数组进行广播操作,将输入数组扩展至相同的维数,然后进行相应的运算。这样就非常方便,可以省去了输入数组大小一致的繁琐操作。 需要注意的是,BSXFUN函数可以广播数组到任意大小,这样可能会影响运算的性能。因此,在使用BSXFUN函数时,我们应该尽量避免使用过多的广播,以免影响程序的运行效率。 另外,需要注意的是,BSXFUN函数不能用于所有的运算,它只能用于一些特定的运算,例如加法和减法。对于其他类型的运算,我们需要使用其他的函数来实现。 总之,BSXFUN函数MATLAB中一种非常有用的函数,它可以大大提高数组的运算效率,减少了输入数组大小一致的繁琐操作。在使用BSXFUN函数时,我们需要注意广播数组的大小,以免影响程序的运行效率。 ### 回答3: bsxfun函数是一个在Matlab中非常有用的函数,可以帮助用户对多维数组进行各种运算。bsxfun的全称是Binary Singleton Expansion Function,它的作用是处理两个输入矩阵,使得它们具有相同的大小,以便能够进行各种运算。 bsxfun函数的语法格式如下: C = bsxfun(fun,A,B) 其中,fun是指封装函数的句柄,A和B是输入的矩阵,C是结果矩阵。 bsxfun函数的作用是将矩阵A与矩阵B进行运算,如相加、相减、相乘等。如果A和B的维数不同,bsxfun函数会自动将较小的矩阵在某一个维度上进行扩展,使它们具有相同的大小。例如,将一个1×3向量加上一个3×1向量,可以使用bsxfun函数实现: a = [1 2 3]; b = [4; 5; 6]; c = bsxfun(@plus,a,b); 运行结果为: c = [5 6 7; 6 7 8; 7 8 9]; bsxfun函数还可以扩展到更多的维度,比如三维、四维甚至更高维度的数组。同时,bsxfun函数还可以结合匿名函数进行操作,比如: a = [1 2; 3 4]; b = [5 6; 7 8]; c = bsxfun(@(x,y) x.^y,a,b); 运行结果为: c = [1 64; 2187 65536]; 以上就是bsxfun函数的一些基础用法。总之,bsxfun函数是一个非常强大的Matlab函数,可以大大简化矩阵运算的编写过程,同时也应用非常广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值