经典算法思想题目-全排列问题

 给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

输入: [1,2,3]
输出:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

解法:回溯算法

本题是回溯算法的经典应用场景

1. 算法策略

回溯算法是一种搜索法,试探法,它会在每一步做出选择,一旦发现这个选择无法得到期望结果,就回溯回去,重新做出选择。深度优先搜索利用的就是回溯算法思想。

2. 适用场景

回溯算法很简单,它就是不断的尝试,直到拿到解。它的这种算法思想,使它通常用于解决广度的搜索问题,即从一组可能的解中,选择一个满足要求的解。

3. 代码实现

我们可以写一下,数组 [1, 2, 3] 的全排列有:

  • 先写以 1 开头的全排列,它们是:[1, 2, 3], [1, 3, 2],即 1 + [2, 3] 的全排列;
  • 再写以 2 开头的全排列,它们是:[2, 1, 3], [2, 3, 1],即 2 + [1, 3] 的全排列;
  • 最后写以 3 开头的全排列,它们是:[3, 1, 2], [3, 2, 1],即 3 + [1, 2] 的全排列。

即回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

这显然是一个 递归 结构;

  • 递归的终止条件是:一个排列中的数字已经选够了 ,因此我们需要一个变量来表示当前程序递归到第几层,我们把这个变量叫做 depth ,或者命名为 index ,表示当前要确定的是某个全排列中下标为 index 的那个数是多少;
  • used(object):用于把表示一个数是否被选中,如果这个数字(num)被选择这设置为 used[num] = true ,这样在考虑下一个位置的时候,就能够以 O(1)的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。
let permute = function(nums) {
    // 使用一个数组保存所有可能的全排列
    let res = []
    if (nums.length === 0) {
        return res
    }
    let used = {}, path = []
    dfs(nums, nums.length, 0, path, used, res)
    return res
}
let dfs = function(nums, len, depth, path, used, res) {
    // 所有数都填完了
    if (depth === len) {
        res.push([...path])
        return
    }
    for (let i = 0; i < len; i++) {
        if (!used[i]) {
            // 动态维护数组
            path.push(nums[i])
            used[i] = true
            // 继续递归填下一个数
            dfs(nums, len, depth + 1, path, used, res)
            // 撤销操作
            used[i] = false
            path.pop()
        }
      
    }
}

4. 复杂度分析

  • 时间复杂度:O(n∗n!),其中 n 为序列的长度这是一个排列组合,每层的排列组合数为:A^m^ ~n~=n!/(n−m)! ,故而所有的排列有 :A^1^ ~n~ + A^2^ ~n~ + … + A^n-1^ ~n~ = n!/(n−1)! + n!/(n−2)! + … + n! = n! * (1/(n−1)! + 1/(n−2)! + … + 1) <= n! * (1 + 1/2 + 1/4 + … + 1/2^n-1^) < 2 * n!并且每个内部结点循环 n 次,故非叶子结点的时间复杂度为 O(n∗n!)
  • 空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值